Zsolt Turóczi

Learn More
BACKGROUND Mesenteric ischemia is a serious clinical condition requiring immediate surgical intervention. The unavoidable ischemic-reperfusion (IR) injury may be ameliorated using the appropriate postconditioning protocol. The aim of the present study was to investigate the optimal postconditioning algorithm in a rat model of intestinal ischemic-reperfusion(More)
INTRODUCTION Operation on the infrarenal aorta and large arteries of the lower extremities may cause rhabdomyolysis of the skeletal muscle, which in turn may induce remote kidney injury. NIM-811 (N-metyl-4-isoleucine-cyclosporine) is a mitochondria specific drug, which can prevent ischemic-reperfusion (IR) injury, by inhibiting mitochondrial permeability(More)
Interruption of blood flow can cause ischemic reperfusion injury, which sometimes has a fatal outcome. Recognition of the phenomenon known as reperfusion injury has led to initial interventional approaches to lessen the degree of damage. A number of efficient pharmacologic agents and surgical techniques (e.g., local ischemic preconditioning and(More)
UNLABELLED Mesenteric ischemia-reperfusion (IR) is associated with impairment of the gut barrier function and the initiation of a proinflammatory cascade with life-threatening results. Therefore methods directed to ameliorate IR injury are of great importance. We aimed at describing the effects of postconditioning (PC) on the alterations of the intestinal(More)
Massive blood loss leading to hypovolemic shock is still a life-threatening situation. Recently, a great number of investigations have been conducted in order to understand the pathophysiological and immunological changes taking place during shock and to develop treatment strategies. These preclinical trials are based on animal studies. Although a wide(More)
The most severe complication of ischemia-reperfusion injury following lower limb arterial surgery is reperfusion syndrome. Therefore, our aim was to describe the extent of muscle damage and the reperfusion syndrome-related remote organ lesions in detail, through a well-documented case of long-lasting infrarenal aorta thrombosis. After urgent(More)
BACKGROUND Operations on the infrarenal aorta can cause ischemic-reperfusion (IR) injury in local tissues, which could result in remote organ (e.g., lung) damage. Treatment of such injuries remains an unresolved problem. OBJECTIVES Our aim was to reduce remote lung damage after lower limb IR by means of postconditioning. MATERIALS AND METHODS Male(More)
BACKGROUND Ischemia-reperfusion (IR)-induced injury is a frequent sequel of major liver resections. IR injury after prolonged surgical interventions could be the source of increased risk of postoperative morbidity and mortality. Hepatoprotective effects of this new feasible method called remote ischemic perconditioning (RIPER) were investigated in our rat(More)
BACKGROUND Major lower limb vascular surgeries may result in severe, remote injury of the gastrointestinal system, which has high mortality rates. Postconditioning is a technique with potential capability of reducing remote gastrointestinal complications. Our aim was to assess the remote macro- and micro-hemodynamic changes of the small intestine following(More)
BACKGROUND The ability of remote ischemic perconditioning (RIPER) to protect the liver from ischemic-reperfusion (IR) injury has been reported before; however, the mechanism behind the positive effects of RIPER remains unrevealed. Therefore, we aimed to investigate the potential role of neural elements to transfer protective signals evoked by(More)