Learn More
In normal rats the proinflammatory cytokines like interleukin-1beta, interleukin-6, which are induced by bacterial lipopolysaccharides, are able to control thalamo-cortical excitability by exerting strong effects on physiological synchronization such as sleep and on pathological synchronization like that in epileptic discharges. To investigate whether(More)
Peripheral lipopolysaccharide (LPS) injection enhances spike-wave discharges (SWDs) in the genetic rat model of absence epilepsy (Wistar Albino Glaxo/Rijswijk rats: WAG/Rij rats) parallel with the peripheral proinflammatory cytokine responses. The effect of centrally administered LPS on the absence-like epileptic activity is not known, however despite the(More)
We showed previously that the number of spike-wave discharges (SWDs) was increased after intraperitoneal (i.p.) injection of lipopolysaccharide (LPS), inosine (Ino) and muscimol alone whereas i.p. guanosine (Guo), uridine (Urd), bicuculline, theophylline and (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-imine maleate (MK-801) alone decreased(More)
Matrix metalloproteinases (MMPs) are known to be activated in the brain by epileptic seizures and elevated MMP-9 activity has been found in a genetic model of generalized absence epilepsy (Wistar Albino Glaxo Rijswijk/WAG/Rij rats). In this study we posed the question, whether MMP inhibitory dose of doxycycline (20mg/kg) could affect the(More)
Peripheral injection of bacterial lipopolysaccharide (LPS) facilitates 8-10Hz spike-wave discharges (SWD) characterizing absence epilepsy in WAG/Rij rats. It is unknown however, whether peripherally administered LPS is able to alter the generator areas of epileptic activity at the molecular level. We injected 1mg/kg dose of LPS intraperitoneally into(More)
In the adult nervous system, the major source of nucleotide synthesis is the salvage pathway. Uridine is the major form of pyrimidine nucleosides taken up by the brain. Uridine is phosphorylated to nucleotides, which are used for DNA and RNA synthesis as well as for the synthesis of membrane constituents and glycosylation. Uridine nucleotides and UDP-sugars(More)
Matrix metalloproteases (MMPs) degrade or modify extracellular matrix or membrane-bound proteins in the brain. MMP-2 and MMP-9 are activated by treatments that result in a sustained neuronal depolarization and are thought to contribute to neuronal death and structural remodeling. At the synapse, MMP actions on extracellular proteins contribute to changes in(More)
Recently it was revealed that the absence-like epileptic activity of the WAG/Rij (Wistar Albino Glaxo/Rijswijk) rat is associated with depression-like behavioural symptoms. Whether these depressive-like symptoms are accompanying epileptic activity (manifested in spike-wave discharges, SWDs, in the EEG) or whether they are causative for each other are open(More)
There is an increasing attention paid for nucleoside metabolism and changes of nucleoside concentrations in human brain because of its pathological and physiological relevance. In order to determine the post mortem degradation of nucleosides and nucleoside metabolites, the concentrations of four nucleosides and three nucleobases were measured in rat and(More)
Pharmacological and functional data suggest the existence of uridine (Urd) receptors in the central nervous system (CNS). In the present study, simultaneous extracellular single unit recording and microiontophoretic injection of the pyrimidine nucleoside Urd was used to provide evidence for the presence of Urd-sensitive neurons in the thalamus and the(More)