Learn More
A scheme for simple oversampled analog-to-digital (A/D) conversion using single-bit quantization is presented. The scheme is based on recording positions of zero-crossings of the input signal added to a deterministic dither function. This information can be represented in a manner such that the bit rate increases only logarithmically with the oversampling(More)
We describe a spatially adaptive algorithm for image interpolation. The algorithm uses a wavelet transform to extract information about sharp variations in the low-resolution image and then implicitly applies interpolation which adapts to the image local smoothness/singularity characteristics. The proposed algorithm yields images that are sharper compared(More)
—Tight Weyl–Heisenberg frames in`2 (Z) are the tool for short-time Fourier analysis in discrete time. They are closely related to paraunitary modulated filter banks and are studied here using techniques of the filter bank theory. Good resolution of short-time Fourier analysis in the joint time–frequency plane is not attainable unless some redundancy is(More)
Corticomuscular coherence (CMC) estimation is a frequency domain method used to detect a linear coupling between rhythmic activity recorded from sensorimotor cortex (EEG or MEG) and the electromyogram (EMG) of active muscles. In motor neuroscience, rectification of the surface EMG is a common pre-processing step prior to calculating CMC, intended to(More)
One problem of image interpolation refers to magnifying a small image without loss in image clarity. We propose a wavelet based method which estimates the higher resolution information needed to sharpen the image. This method extrapolates the wavelet transform of the higher resolution based on the evolution of the wavelet transform extrema across the(More)