Learn More
Artemisinin is widely used as an antimalarial drug around the world. Artemisinic aldehyde Δ11(13) reductase (DBR2) is a key enzyme which reduces artemisinic aldehyde to dihydroartemisinic aldehyde in the biosynthesis of artemisinin. In this study, two fragments encompassing a putative promoter of DBR2, designated as DBR2pro1 and DBR2pro2, were isolated(More)
· Six transcription factors of APETALA2/ethylene-response factor (AP2/ERF) family were cloned and analyzed in Artemisia annua. Real-time quantitative polymerase chain reaction (RT-Q-PCR) showed that AaORA exhibited similar expression patterns to those of amorpha-4,11-diene synthase gene (ADS), cytochrome P450-dependent hydroxylase gene (CYP71AV1) and double(More)
The phytohormone abscisic acid (ABA) plays an important role in plant development and environmental stress response. In this study, we cloned an ABA receptor orthologue, AaPYL9, from Artemisia annua L. AaPYL9 is expressed highly in leaf and flower. AaPYL9 protein can be localized in both nucleus and cytoplasm. Yeast two-hybrid assay shows AaPYL9 can(More)
Artemisinin is a sesquiterpenoid especially synthesized in the Chinese herbal plant, Artemisia annua, which is widely used in the treatment of malaria. Artemisinin accumulation can be enhanced by exogenous abscisic acid (ABA) treatment. However, it is not known how ABA signaling regulates artemisinin biosynthesis. A global expression profile and(More)
Jasmonates (JAs) are important signaling molecules in plants and play crucial roles in stress responses, secondary metabolites' regulation, plant growth and development. In this study, the promoter of AaAOC, which was the key gene of jasmonate biosynthetic pathway, had been cloned. GUS staining showed that AaAOC was expressed ubiquitiously in A. annua.(More)
The full-length cDNA sequence of AaERF3 was cloned and characterized from Artemisia annua. The bioinformatic analysis and phylogenetic tree analysis implied that the AaERF3 encoded a putative protein of 193 amino acids which formed a closely related subgroup with AtERF1, ERF1 and ORA59 in Arabidopsis. The result of subcellular localization showed that(More)
The phytohormone abscisic acid (ABA) plays an important role in plant development and environmental stress response. Additionally, ABA also regulates secondary metabolism such as artemisinin in the medicinal plant Artemisia annua L. Although an earlier study showed that ABA receptor, AaPYL9, plays a positive role in ABA-induced artemisinin content(More)
The plant Artemisia annua is well known due to the production of artemisinin, a sesquiterpene lactone that is widely used in malaria treatment. Phytohormones play important roles in plant secondary metabolism, such as jasmonic acid (JA), which can induce artemisinin biosynthesis in A. annua. Nevertheless, the JA-inducing mechanism remains poorly understood.(More)
Artemisinin is an effective component of drugs against malaria. The regulation of artemisinin biosynthesis is at the forefront of artemisinin research. Previous studies showed that AaWRKY1 can regulate the expression of ADS, which is the first key enzyme in artemisinin biosynthetic pathway. In this study, AaWRKY1 was cloned, and it activated ADSpro and(More)
Glandular trichomes are generally considered biofactories that produce valuable chemicals. Increasing glandular trichome density is a very suitable way to improve the productivity of these valuable metabolites, but little is known about the regulation of glandular trichome formation. Phytohormone jasmonate (JA) promotes glandular trichome initiation in(More)