Learn More
Tuning and characterizing the interfacial structure of organic semiconductors on graphene is essential for graphene-based devices. Regulation of the supramolecular assembling structure of oligothiophenes on graphene by changing functional groups attached to the backbone of oligothiophenes is described and the assembling behavior is compared with that on the(More)
An achiral oligo(p-phenylene vinylene) derivative with a ureido-triazine hydrogen bonding unit self-assembles into rows of hydrogen bonded dimers at the liquid/solid interface. Scanning tunneling microscopy reveals the formation of chiral domains, but overall, the surface remains racemic. Addition of a chiral auxiliary which is able to interact with the(More)
We have designed and synthesized two porphyrin containing two-dimensional (2D) polymers based on the imine linkage. Both the 2D polymers are revealed to be 2D organic semiconductors with band gaps of around 1 eV. STM characterization reveals that the rigidity and affinity of building blocks to the surface has essential effects on the topology of the 2D(More)
Length scale dependent formation of conglomerates and racemic compounds has been observed in self-assembled hierarchical supramolecular architectures based on oligo(p-phenylenevinylene)-phenylglycinamide at the liquid-solid interface and in solution.
The investigation of semiconductors at the surface provides opportunities to observe and understand the mechanism of molecular interaction for the design of semiconductors so that organic electronics with good performance can be built. Herein, the 2D crystallization of rylene diimide based n-type semiconductors (i.e., 1-4) was explored at the liquid-highly(More)
On graphene grown on copper foil, oligothiophenes form identical supramolecular assemblies on different copper facets. Most importantly, we found that the graphene ripple structures, even with a height as small as ~0.5 nm, can significantly alter the molecule-substrate interaction, which has never been observed previously.
The spreading behavior and supramolecular assemblies of some arylbenzimidazoles with 2-substituted aromatic groups such as phenyl, naphthyl, anthryl and pyrenyl on water surface and the subphase containing AgNO3 were investigated. It was observed that although these compounds lack long alkyl chains, they showed surface activity when spread from chloroform(More)
A new kind of optical novelty filtering by an incoherent light system is presented that is based on a special property of dynamic complementary suppression modulated transmission in bacteriorhodopsin film. By simplifying the energy system, we establish a theoretical model, and our experimental results are compared with those reached by numerical simulation(More)
An imine-based 2D polymer side-functionalized with o-hydroxyl group was designed in regard to its potential ability to serve as a chelating agent and synthesized on a highly oriented pyrolytic graphite surface with a relatively low annealing temperature. When annealed to a higher temperature the o-hydroxyl group reacts further with the imine group, leading(More)
To continue our earlier research on novelty filters in a system of incoherent light [Opt. Lett. 30,81 (2005)], we discuss the relationship between parameters of a bacteriorhodopsin film and the quality of a novelty filter image. For both fixed and moving velocities of the input image, differences in the novelty filter's image as a function of thickness,(More)