Learn More
Understanding molecular femtosecond dynamics under intense X-ray exposure is critical to progress in biomolecular imaging and matter under extreme conditions. Imaging viruses and proteins at an atomic spatial scale and on the time scale of atomic motion requires rigorous, quantitative understanding of dynamical effects of intense X-ray exposure. Here we(More)
The charged environment within a dense plasma leads to the phenomenon of ionization-potential depression (IPD) for ions embedded in the plasma. Accurate predictions of the IPD effect are of crucial importance for modeling atomic processes occurring within dense plasmas. Several theoretical models have been developed to describe the IPD effect, with(More)
Imaging of the structure of single proteins or other biomolecules with atomic resolution would be enormously beneficial to structural biology. X-ray freeelectron lasers generate highly intense and ultrashort x-ray pulses, providing a route towards imaging of single molecules with atomic resolution. The information on molecular structure is encoded in the(More)
Using electron spectroscopy, we have investigated nanoplasma formation from noble gas clusters exposed to high-intensity hard-x-ray pulses at ~5 keV. Our experiment was carried out at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility in Japan. Dedicated theoretical simulations were performed with the molecular dynamics tool XMDYN. We found(More)
The understanding of physical and chemical changes at an atomic spatial scale and on the time scale of atomic motion is essential for a broad range of scientific fields. A new class of femtosecond, intense, short wavelength lasers, the free electron lasers, has opened up new opportunities to investigate dynamics in many areas of science. For chemical(More)
Coherent diffraction imaging (CDI) of single molecules at atomic resolution is a major goal for the x-ray free-electron lasers (XFELs). However, during an imaging pulse, the fast laser-induced ionization may strongly affect the recorded diffraction pattern of the irradiated sample. The radiation tolerance of the imaged molecule should then be investigated a(More)
We present a generalized method to describe the x-ray scattering intensity of the Bragg spots in a diffraction pattern from nanocrystals exposed to intense x-ray pulses. Our method involves the subdivision of a crystal into smaller units. In order to calculate the dynamics within every unit, we employ a Monte-Carlo-molecular dynamics-ab-initio hybrid(More)
The advent of newer, brighter, and more coherent X-ray sources, such as X-ray Free-Electron Lasers (XFELs), represents a tremendous growth in the potential to apply coherent X-rays to determine the structure of materials from the micron-scale down to the Angstrom-scale. There is a significant need for a multi-physics simulation framework to perform(More)