Zoltán Szittner

Learn More
Microarray technology outgrew the detection of simple intermolecular interactions, as incubation of slides with living cells opened new vistas. Cell-based array technology permits simultaneous detection of several different cell surface molecules, allowing the complex characterization of cells with an amount of information that is hardly assessed by any(More)
Systemic lupus erythematosus is characterized by dysfunctional clearance of apoptotic debris and the development of pathogenic autoantibodies. While the complement system is also involved in the disease no attempt has been made to generate a comprehensive view of immune complex formation from various autoantigens. We increased the complexity of autoantibody(More)
Microarrayed antigens are used for identifying serum antibodies with given specificities and for generating binding profiles. Antibodies bind to these arrayed antigens forming immune complexes and are conventionally identified by secondary labelled antibodies.In the body immune complexes are identified by bone marrow derived phagocytic cells, such as(More)
Systemic lupus erythematosus is a chronic autoimmune disease with multifactorial ethiopathogenesis. The complement system is involved in both the early and late stages of disease development and organ damage. To better understand autoantibody mediated complement consumption we examined ex vivo immune complex formation on autoantigen arrays. We recruited(More)
Our study tested the hypothesis that immunoglobulins differ in their ability to activate the nuclear factor-κB pathway mediated cellular responses. These responses are modulated by several properties of the immune complex, including the ratio of antibody isotypes binding to antigen. Immunoassays allow the measurement of antigen specific antibodies belonging(More)
  • 1