Zoltán Molnár

Learn More
Pyramidal neurons of the neocortex can be subdivided into two major groups: deep- (DL) and upper-layer (UL) neurons. Here we report that the expression of the AT-rich DNA-binding protein Satb2 defines two subclasses of UL neurons: UL1 (Satb2 positive) and UL2 (Satb2 negative). In the absence of Satb2, UL1 neurons lose their identity and activate DL- and(More)
We labeled axonal projections using carbocyanine dyes in the developing rat brain to study cellular interactions that might underlie the establishment of thalamocortical connectivity. By embryonic day 14 (E14), groups of neurons in the ventral diencephalon and the primitive internal capsule have established projections to the dorsal thalamus, and thalamic(More)
To identify the origin and track the migratory pathway of specific subpopulations of GABAergic interneurons, we studied tangential migration in a recently developed GAD65-GFP transgenic mouse strain. First, we used immunohistochemical methods to characterize the expression of specific neurochemical markers in the GAD65-GFP neurons. Then, organotypic(More)
Axon outgrowth during development and neurotransmitter release depends on exocytotic mechanisms, although what protein machinery is common to or differentiates these processes remains unclear. Here we show that the neural t-SNARE (target-membrane-associated–soluble N-ethylmaleimide fusion protein attachment protein (SNAP) receptor) SNAP-25 is not required(More)
The embryonic subventricular zone (SVZ) is a critical site for generating cortical projection neurons; however, molecular mechanisms regulating neurogenesis specifically in the SVZ are largely unknown. The transcription factor Eomes/Tbr2 is transiently expressed in cortical SVZ progenitor cells. Here we demonstrate that conditional inactivation of Tbr2(More)
The arealization of the mammalian cortex is believed to be controlled by a combination of intrinsic factors that are expressed in the cortex, and external signals, some of which are mediated through thalamic input. Recent studies on transgenic mice have identified families of molecules that are involved in thalamic axon growth, pathfinding and cortical(More)
A cascade of simple mechanisms influences thalamic innervation of the neocortex. The cortex exerts a remote growth-promoting influence on thalamic axons when they start to grow out, becomes growth-permissive when the axons begin to invade, and later expresses a 'stop signal', causing termination in layer 4. However, any part of the thalamus will innervate(More)
Phosphoinositides are critical regulators of ion channel and transporter activity. Defects in interactions of inwardly rectifying potassium (Kir) channels with phosphoinositides lead to disease. ATP-sensitive K(+) channels (K(ATP)) are unique among Kir channels in that they serve as metabolic sensors, inhibited by ATP while stimulated by long-chain (LC)(More)
This review aims to provide examples of how both comparative and genetic analyses contribute to our understanding of the rules for cortical development and evolution. Genetic studies have helped us to realize the evolutionary rules of telencephalic organization in vertebrates. The control of the establishment of conserved telencephalic subdivisions and the(More)
Previous studies of macaque and human cortices identified cytoarchitectonically distinct germinal zones; the ventricular zone inner subventricular zone (ISVZ), and outer subventricular zone (OSVZ). To date, the OSVZ has only been described in gyrencephalic brains, separated from the ISVZ by an inner fiber layer and considered a milestone that triggered(More)