Zoltán Kevei

Learn More
Leguminous plants are able to establish a nitrogen-fixing symbiosis with soil bacteria generally known as rhizobia. Metabolites exuded by the plant root activate the production of a rhizobial signal molecule, the Nod factor, which is essential for symbiotic nodule development. This lipo-chitooligosaccharide signal is active at femtomolar concentrations, and(More)
Comparative genome analysis has been performed between alfalfa ( Medicago sativa) and pea ( Pisum sativum), species which represent two closely related tribes of the subfamily Papilionoideae with different basic chromosome numbers. The positions of genes on the most recent linkage map of diploid alfalfa were compared to those of homologous loci on the(More)
Deciphering the mechanisms leading to symbiotic nitrogen-fixing root nodule organogenesis in legumes resulted in the identification of numerous nodule-specific genes and gene families. Among them, NCR and GRP genes encode short secreted peptides with potential antimicrobial activity. These genes appear to form large multigenic families in Medicago(More)
BACKGROUND The CDC20 and Cdh1/CCS52 proteins are substrate determinants and activators of the Anaphase Promoting Complex/Cyclosome (APC/C) E3 ubiquitin ligase and as such they control the mitotic cell cycle by targeting the degradation of various cell cycle regulators. In yeasts and animals the main CDC20 function is the destruction of securin and mitotic(More)
The anaphase-promoting complex (APC), a multisubunit E3 ubiquitin ligase, is an essential regulator of the cell cycle from metaphase until S phase in yeast and metazoans. APC mediates degradation of numerous cell cycle-related proteins, including mitotic cyclins and its activation and substrate-specificity are determined by two adaptor proteins, Cdc20 and(More)
The stability of epigenetic patterns is critical for genome integrity and gene expression. This highly coordinated process involves interrelated positive and negative regulators that impact distinct epigenetic marks, including DNA methylation and dimethylation at histone H3 lysine 9 (H3K9me2). In Arabidopsis, mutations in the DNA methyltransferase MET1,(More)
Legume plants host nitrogen-fixing endosymbiotic Rhizobium bacteria in root nodules. In Medicago truncatula, the bacteria undergo an irreversible (terminal) differentiation mediated by hitherto unidentified plant factors. We demonstrated that these factors are nodule-specific cysteine-rich (NCR) peptides that are targeted to the bacteria and enter the(More)
In Medicago nodules, endoreduplication cycles and ploidy-dependent cell enlargement occur during the differentiation of bacteroid-containing nitrogen-fixing symbiotic cells. These events are accompanied by the expression of ccs52A, a plant ortholog of the yeast and animal cdh1/srw1/fzr genes, acting as a substrate-specific activator of the(More)
The increased amount of data produced by large genome sequencing projects allows scientists to carry out important syntenic studies to a great extent. Detailed genetic maps and entirely or partially sequenced genomes are compared, and macro- and microsyntenic relations can be determined for different species. In our study, the syntenic relationships between(More)
Lotus japonicus determinate nodules differ greatly from indeterminate nodules in their organogenesis and morphological characteristics, whereas Lupinus albus lupinoid nodules share features of determinate and indeterminate nodules. The mitotic inhibitor Ccs52A is essential for endoreduplication and ploidy-dependent cell enlargement during symbiotic cell(More)