Zoltán A. Tuza

Learn More
The many successes of synthetic biology have come in a manner largely different from those in other engineering disciplines; in particular, without well-characterized and simplified prototyping environments to play a role analogous to wind-tunnels in aerodynamics and breadboards in electrical engineering. However, as the complexity of synthetic circuits(More)
— In this paper, we develop an experimentally validated MATLAB software toolbox as an accompaniment to an in vitro cell-free biomolecular " breadboard " system. The toolbox gives insight into the dynamics of unmeasured states in the cell-free system, accounting especially for the resource usage. Parameter lumping and the reduced order modeling are used to(More)
Reliable in silico design of synthetic gene networks necessitates novel approaches to model the process of protein synthesis under the influence of limited resources. We present such a novel protein synthesis model which originates from the Ribosome Flow Model and among other things describes the movement of RNA-polymerase and ribosomes on mRNA and DNA(More)
In this paper an algorithm is given to determine all possible structurally different linearly conjugate realizations of a given kinetic polynomial system. The solution is based on the iterative search for constrained dense realizations using linear programming. Since there might exist exponentially many different reaction graph structures, we cannot expect(More)
The many successes of synthetic biology have come in a manner largely different from those in other engineering disciplines; in particular, without well-characterized and simplified prototyping environments to play a role analogous to wind-tunnels in aerodynamics and breadboards in electrical engineering. However, as the complexity of synthetic circuits(More)
  • 1