Learn More
MOTIVATION The recent discoveries of large numbers of non-coding RNAs and computational advances in genome-scale RNA search create a need for tools for automatic, high quality identification and characterization of conserved RNA motifs that can be readily used for database search. Previous tools fall short of this goal. RESULTS CMfinder is a new tool to(More)
TAL1/SCL is a master regulator of haematopoiesis whose expression promotes opposite outcomes depending on the cell type: differentiation in the erythroid lineage or oncogenesis in the T-cell lineage. Here, we used a combination of ChIP sequencing and gene expression profiling to compare the function of TAL1 in normal erythroid and leukaemic T cells.(More)
We applied a computational pipeline based on comparative genomics to bacteria, and identified 22 novel candidate RNA motifs. We predicted six to be riboswitches, which are mRNA elements that regulate gene expression on binding a specific metabolite. In separate studies, we confirmed that two of these are novel riboswitches. Three other riboswitch candidates(More)
Recent computational scans for non-coding RNAs (ncRNAs) in multiple organisms have relied on existing multiple sequence alignments. However, as sequence similarity drops, a key signal of RNA structure--frequent compensating base changes--is increasingly likely to cause sequence-based alignment methods to misalign, or even refuse to align, homologous ncRNAs,(More)
Transcription factor overexpression is common in biological experiments and transcription factor amplification is associated with many cancers, yet few studies have directly compared the DNA-binding profiles of endogenous versus overexpressed transcription factors. We analyzed MyoD ChIP-seq data from C2C12 mouse myotubes, primary mouse myotubes, and mouse(More)
Growing recognition of the numerous, diverse and important roles played by non-coding RNA in all organisms motivates better elucidation of these cellular components. Comparative genomics is a powerful tool for this task and is arguably preferable to any high-throughput experimental technology currently available, because evolutionary conservation highlights(More)
Noncoding RNAs (ncRNAs) are important functional RNAs that do not code for proteins. We present a highly efficient computational pipeline for discovering cis-regulatory ncRNA motifs de novo. The pipeline differs from previous methods in that it is structure-oriented, does not require a multiple-sequence alignment as input, and is capable of detecting RNA(More)
BACKGROUND As a variety of functional genomic and proteomic techniques become available, there is an increasing need for functional analysis methodologies that integrate heterogeneous data sources. METHODS In this paper, we address this issue by proposing a general framework for gene function prediction based on the k-nearest-neighbor (KNN) algorithm. The(More)
We have identified a highly conserved RNA motif located upstream of genes encoding molybdate transporters, molybdenum cofactor (Moco) biosynthesis enzymes, and proteins that utilize Moco as a coenzyme. Bioinformatics searches have identified 176 representatives in gamma-Proteobacteria, delta-Proteobacteria, Clostridia, Actinobacteria, Deinococcus-Thermus(More)
  • Yvonne D. Krom, Peter E. Thijssen, Janet M. Young, Bianca den Hamer, Judit Balog, Zizhen Yao +11 others
  • 2013
Facioscapulohumeral dystrophy (FSHD) is a progressive muscular dystrophy caused by decreased epigenetic repression of the D4Z4 macrosatellite repeats and ectopic expression of DUX4, a retrogene encoding a germline transcription factor encoded in each repeat. Unaffected individuals generally have more than 10 repeats arrayed in the subtelomeric region of(More)