Edgar T Walters3
Qing Yang3
Robyn J Crook3
3Edgar T Walters
3Qing Yang
3Robyn J Crook
Learn More
Mechanisms underlying chronic pain that develops after spinal cord injury (SCI) are incompletely understood. Most research on SCI pain mechanisms has focused on neuronal alterations within pain pathways at spinal and supraspinal levels associated with inflammation and glial activation. These events might also impact central processes of primary sensory(More)
TRPV4 (Transient Receptor Potential Vanilloid 4) channels are activated by a wide range of stimuli, including hypotonic stress, non-noxious heat and mechanical stress and some small molecule agonists (e.g. phorbol ester 4α-PDD). GSK1016790A (GSK101) is a recently discovered specific small molecule agonist of TRPV4. Its effects on physical determinants of(More)
  • Zizhen Wu, Qing Yang, Robyn J Crook, Roger G O'Neil, Edgar T Walters
  • 2013
Chronic neuropathic pain is often a severe and inadequately treated consequence of spinal cord injury (SCI). Recent findings suggest that SCI pain is promoted by spontaneous activity (SA) generated chronically in cell bodies of primary nociceptors in dorsal root ganglia (DRG). Many nociceptors express transient receptor potential V1 (TRPV1) channels, and in(More)
Hair cells are the mechanosensory cells of the inner ear. Mechanotransduction channels in hair cells are gated by tip links. The molecules that connect tip links to transduction channels are not known. Here we show that the transmembrane protein TMIE forms a ternary complex with the tip-link component PCDH15 and its binding partner TMHS/LHFPL5. Alternative(More)
Chronic pain caused by insults to the CNS (central neuropathic pain) is widely assumed to be maintained exclusively by central mechanisms. However, chronic hyperexcitablility occurs in primary nociceptors after spinal cord injury (SCI), suggesting that SCI pain also depends upon continuing activity of peripheral sensory neurons. The present study in rats(More)
Cochlear hair cells convert sound-induced vibration into electrical signals. FAM65B mutations cause hearing loss by an unknown mechanism. Using biochemistry and stochastic optical reconstruction microscopy (STORM), we show here that Fam65b oligomers form a circumferential ring near the basal taper of the mechanically sensitive stereocilia of murine hair(More)
  • 1