Learn More
Interleukin-17 (IL-17) secreted by T helper 17 (Th17) cells is essential in the development of experimental autoimmune encephalomyelitis (EAE). However, it remains unclear how IL-17-mediated signaling in different cellular compartments participates in the central nervous system (CNS) inflammatory process. We examined CNS inflammation in mice with specific(More)
Interleukin 17 (IL-17) is a signature cytokine of Th17 cells. We previously reported that deletion of NF-κB activator 1 (Act1), the key transducer of IL-17 receptor signaling, from the neuroectodermal lineage in mice (neurons, oligodendrocytes and astrocytes) results in attenuated severity of experimental autoimmune encephalomyelitis (EAE). Here we examined(More)
Interleukin-1 (IL-1)-mediated signaling in T cells is essential for T helper 17 (Th17) cell differentiation. We showed here that SIGIRR, a negative regulator of IL-1 receptor and Toll-like receptor signaling, was induced during Th17 cell lineage commitment and governed Th17 cell differentiation and expansion through its inhibitory effects on IL-1 signaling.(More)
Interleukin 1β (IL-1β) is critical for the in vivo survival, expansion and effector function of IL-17-producing helper T (T(H)17) cells during autoimmune responses, including experimental autoimmune encephalomyelitis (EAE). However, the spatiotemporal role and cellular source of IL-1β during EAE pathogenesis are poorly defined. In the present study, we(More)
IL-25 initiates, promotes, and augments Th2 immune responses. In this study, we report that Act1, a key component in IL-17-mediated signaling, is an essential signaling molecule for IL-25 signaling. Although Act1-deficient mice showed reduced expression of KC (CXCL1) and neutrophil recruitment to the airway compared with wild-type mice in response to IL-17(More)
Interleukin-25 (IL-25 or IL-17E), a member of the structurally related IL-17 family, functions as an important mediator of T helper 2 cell-type (type 2) responses. We examined the cell type-specific role of IL-25-induced Act1-mediated signaling in protective immunity against helminth infection. Targeted Act1 deficiency in epithelial cells resulted in a(More)
Cuprizone inhibits mitochondrial function and induces demyelination in the corpus callosum, which resembles pattern III lesions in multiple sclerosis patients. However, the molecular and cellular mechanism by which cuprizone induces demyelination remains unclear. Interleukin-17 (IL-17) secreted by T helper 17 cells and γδT cells are essential in the(More)
Gab2 is an important adapter molecule for cytokine signaling. Despite its major role in signaling by receptors associated with hematopoiesis, the role of Gab2 in hematopoiesis has not been addressed. We report that despite normal numbers of peripheral blood cells, bone marrow cells, and c-Kit(+)Lin(-)Sca-1(+) (KLS) cells, Gab2-deficient hematopoietic cells(More)
The cellular and molecular mechanisms driven by IL-25 and its cognate receptor IL-17RB necessary for the promotion of Th2-mediating pathogenic pulmonary inflammation remains to be defined. We have previously reported the critical role of the U-box-type E3 ubiquitin ligase Act1 (1) for the downstream signaling of the IL-17 cytokine family including the(More)
Bone marrow-derived plasmacytoid dendritic cells (pDCs) from IL-1R-associated kinase (IRAK)2-deficient mice produced more IFNs than did wild-type pDCs upon stimulation with the TLR9 ligand CpG. Furthermore, in CpG-stimulated IRAK2-deficient pDCs there was increased nuclear translocation of IFN regulatory factor 7, the key transcription factor for IFN gene(More)