Ziyuan Lin

Learn More
Two-dimensional MoS2 is a promising material for future nanoelectronics and optoelectronics. It has remained a great challenge to grow large-size crystalline and high surface coverage monolayer MoS2. In this work, we investigate the controllable growth of monolayer MoS2 evolving from triangular flakes to continuous thin films by optimizing the concentration(More)
Dimensionality reduction of high-dimensional data for visu-alization has recently been formalized as an information retrieval task where original neighbors of data points are retrieved from the low-dimensional display, and the visualiza-tion is optimized to maximize flexible tradeoffs between precision and recall of the retrieval, avoiding misses and false(More)
Bundling of graph edges (node-to-node connections) is a common technique to enhance visibility of overall trends in the edge structure of a large graph layout, and a large variety of bundling algorithms have been proposed. However, with strong bundling, it becomes hard to identify origins and destinations of individual edges. We propose a solution: we(More)
A microscopic understanding of the growth mechanism of two-dimensional materials is of particular importance for controllable synthesis of functional nanostructures. Because of the lack of direct and insightful observations, how to control the orientation and the size of two-dimensional material grains is still under debate. Here we discern distinct(More)
Finding relationships between multiple views of data is essential both for exploratory analysis and as pre-processing for predictive tasks. A prominent approach is to apply variants of Canonical Correlation Analysis (CCA), a classical method seeking correlated components between views. The basic CCA is restricted to maximizing a simple dependency criterion,(More)
  • 1