Zissimos P. Mourelatos

Learn More
Amyotrophic lateral sclerosis (ALS) is a devastating and universally fatal neurodegenerative disease. Mutations in two related RNA-binding proteins, TDP-43 and FUS, that harbor prion-like domains, cause some forms of ALS. There are at least 213 human proteins harboring RNA recognition motifs, including FUS and TDP-43, raising the possibility that additional(More)
Spinal muscular atrophy (SMA) is a common neurodegenerative disease caused by deletion or loss-of-function mutations of the survival of motor neurons (SMN) protein. SMN is in a complex with several proteins, including Gemin2, Gemin3 and Gemin4, and it plays important roles in small nuclear ribonucleoprotein (snRNP) biogenesis and in pre-mRNA splicing. Here,(More)
Recent immunocytochemical and morphometric studies in amyotrophic lateral sclerosis, Alzheimer's disease (AD), and aging indicate that the neuronal Golgi apparatus is a reliable index of activity or degeneration. To further evaluate a possible role of the Golgi apparatus in the pathogenesis of AD, we examined by double labeling the neuronal Golgi apparatus,(More)
Piwi family proteins are essential for germline development and bind piwi-interacting RNAs (piRNAs). The grandchildless gene aub of Drosophila melanogaster encodes the piRNA-binding protein Aubergine (Aub), which is essential for formation of primordial germ cells (PGCs). Here we report that Piwi family proteins of mouse, Xenopus laevis and Drosophila(More)
Dominant mutations of the SOD1 gene encoding Cu,Zn superoxide dismutase have been found in members of certain families with familial amyotrophic lateral sclerosis (ALS). To better understand the contribution of SOD1 mutations in the pathogenesis of familial ALS, we developed transgenic mice expressing one of the mutations found in familial ALS. These(More)
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motor neurons. Mutations in related RNA-binding proteins TDP-43, FUS/TLS and TAF15 have been connected to ALS. These three proteins share several features, including the presence of a bioinformatics-predicted prion domain, aggregation-prone nature in vitro and in vivo and(More)
A new paradigm of RNA-directed gene expression regulation has emerged recently, profound in scope but arresting in the apparent simplicity of its core mechanism. Cells express numerous small ( approximately 22 nucleotide) RNAs that act as specificity determinants to direct destruction or translational repression of their mRNA targets. These small RNAs arise(More)
microRNAs (miRNAs) bind to Argonaute (Ago) proteins and inhibit translation or promote degradation of mRNA targets. Human let-7 miRNA inhibits translation initiation of mRNA targets in an m(7)G cap-dependent manner and also appears to block protein production, but the molecular mechanism(s) involved is unknown and the role of Ago proteins in translational(More)
MicroRNAs (miRNAs) are small regulatory RNAs that serve fundamental biological roles across eukaryotic species. We describe a new method for high-throughput miRNA detection. The technique is termed the RNA-primed, array-based Klenow enzyme (RAKE) assay, because it involves on-slide application of the Klenow fragment of DNA polymerase I to extend unmodified(More)
Germ cells implement elaborate mechanisms to protect their genetic material and to regulate gene expression during differentiation. Piwi proteins bind Piwi-interacting RNAs (piRNAs), small germline RNAs whose biogenesis and functions are still largely elusive. We used high-throughput sequencing after cross-linking and immunoprecipitation (HITS-CLIP) coupled(More)