Learn More
Cdc25 phosphatases are important in cell cycle control and activate cyclin-dependent kinases (Cdk). Efforts are currently under way to synthesize specific small-molecule Cdc25 inhibitors that might have anticancer properties. NSC 95397, a protein tyrosine phosphatase antagonist from the National Cancer Institute library, was reported to be a potent Cdc25(More)
The unique, plate-like morphology of hydroxyapatite (HAP) nanocrystals in bone lends to the hierarchical structure and functions of bone. Proteins enriched in phosphoserine (Ser-OPO3) and glutamic acid (Glu) residues have been proposed to regulate crystal morphology; however, the atomic-level mechanisms remain unclear. Previous molecular dynamics studies(More)
We previously found that K vitamin analogues caused cell growth inhibition in Hep3B hepatoma cells in vitro, which was associated with their inhibitory effects on protein tyrosine-phosphatases. In this study, we show that Cdc25A, a protein phosphatase, was inactivated by novel arylating K vitamin analogues. The inactivation of Cdc25A correlated with their(More)
The self-assembly of lipid bilayer membranes to enclose functional biomolecules, thus defining a "protocell," was a seminal moment in the emergence of life on Earth and likely occurred at the micro-environment of the mineral-water interface. Mineral-lipid interactions are also relevant in biomedical, industrial and technological processes. Yet, no(More)
  • 1