• Citations Per Year
Learn More
Intra-procedural imaging is important for guiding cardiac arrhythmia ablation. It is difficult to obtain intra-procedural correlation of thermal lesion formation with action potential (AP) changes in the transmural plane during ablation. This study tested parametric ultrasound imaging for transmural imaging of lesion and AP changes in high intensity focused(More)
BACKGROUND High intensity focused ultrasound (HIFU) has been introduced for treatment of cardiac arrhythmias because it offers the ability to create rapid tissue modification in confined volumes without directly contacting the myocardium. In spite of the benefits of HIFU, a number of limitations have been reported, which hindered its clinical adoption. (More)
The study of mechanotransduction relies on tools that are capable of applying mechanical forces to elicit and assess cellular responses. Here we report a new (to our knowledge) technique, called two-bubble acoustic tweezing cytometry (TB-ATC), for generating spatiotemporally controlled subcellular mechanical forces on live cells by acoustic actuation of(More)
To gain better understanding of the detailed mechanisms of high-intensity focused ultrasound (HIFU) ablation for cardiac arrhythmias, we investigated how the cellular electrophysiological (EP) changes were correlated with temperature increases and thermal dose (cumulative equivalent minutes [CEM43]) during HIFU application using Langendorff-perfused rabbit(More)
We present a novel fluid control method that is capable of driving particle-based fluid simulation to match a rapidly changing target while keeping natural fluid-like motion. To achieve the desired behavior, we first generate control particles by sampling the target shape and then apply a non-linear constraint to each control particle, with its neighboring(More)
  • 1