#### Filter Results:

#### Publication Year

1995

2017

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

- Ziming Li
- ISSAC
- 1998

The subresultant theory for univariate commutative poly-nomials is generalized to Ore polynomials. The generalization includes: the subresultant theorem, gap structure, and subresultant algorithm. Using this generalization, we deene Sylvester's resultant o f t w o Ore polynomials, derive the respective determinantal formulas for the greatest common right… (More)

- Ziming Li, István Nemes
- ISSAC
- 1997

This paper presents a modular algorithm for computing the greatest common right divisor (gcrd) of two univariate Ore polynomials over Z[t]. The subresultants of Ore polynomi-als are used to compute the evaluation homomorphic images of the gcrd. Rational number and rational function reconstructions are used to recover coefficients. The experimental results… (More)

- Alin Bostan, Shaoshi Chen, Frédéric Chyzak, Ziming Li, Guoce Xin
- ISSAC
- 2013

We present a new reduction algorithm that simultaneously extends Hermite's reduction for rational functions and the Hermite-like reduction for hyperexponential functions. It yields a unique additive decomposition that allows to decide hyperexponential integrability. Based on this reduction algorithm, we design a new algorithm to compute minimal telescopers… (More)

- Ziming Li, Fritz Schwarz
- J. Symb. Comput.
- 2001

When factoring linear partial differential systems with a finite-dimensional solution space or analyzing symmetries of nonlinear ode's, we need to look for rational solutions of certain nonlinear pde's. The nonlinear pde's are called Riccati-like because they arise in a similar way as Riccati ode's. In this paper we describe the structure of rational… (More)

- Kazuhiro Yokoyama, Ziming Li, István Nemes
- ISSAC
- 1995

We present an efficient algorithm for testing whether a given integral polynomial has two distinct roots a, B such that fflp is a root of unity. The test is based on results obtained by investigation of the structure of the splitting field of the polynomial. By this investigate ion, we found also an improved bound for the least common multiple of the orders… (More)

- Alin Bostan, Shaoshi Chen, Frédéric Chyzak, Ziming Li
- ISSAC
- 2010

The long-term goal initiated in this work is to obtain fast algorithms and implementations for definite integration in Almkvist and Zeilberger's framework of (differential) creative telescoping. Our complexity-driven approach is to obtain tight degree bounds on the various expressions involved in the method. To make the problem more tractable, we restrict… (More)

- Ziming Li, Fritz Schwarz, Serguei P. Tsarev
- J. Symb. Comput.
- 2003

A D-finite system is a finite set of linear homogeneous partial differential equations in several independent and dependent variables, whose solution space is of finite dimension. Let L be a D-finite system with rational function coefficients. We present an algorithm for computing all hyperexponential solutions of L, and an algorithm for computing all… (More)

- Miroslav Halás, Ülle Kotta, Ziming Li, Huaifu Wang, Chunming Yuan
- ISSAC
- 2009

The paper describes an algebraic construction of the inversive difference field associated with a discrete-time rational nonlinear control system under the assumption that the system is submersive. We prove that a system is submersive iff its associated difference ideal is proper, prime and reflexive. Next, we show that Kähler differentials of the… (More)

- Manuel Bronstein, Ziming Li, Min Wu
- ISSAC
- 2005

Picard-Vessiot extensions for ordinary differential and difference equations are well known and are at the core of the associated Galois theories. In this paper, we construct fundamental matrices and Picard-Vessiot extensions for systems of linear partial functional equations having finite linear dimension. We then use those extensions to show that all the… (More)

- George Labahn, Ziming Li
- ISSAC
- 2004

An orthogonal Ore ring is an abstraction of common properties of linear partial differential, shift and q-shift operators. Using orthogonal Ore rings, we present an algorithm for finding hyperexponential solutions of a system of linear differential, shift and q-shift operators, or any mixture thereof, whose solution space is finite-dimensional. The… (More)