Learn More
Dimensionality reduction is usually involved in the domains of artificial intelligence and machine learning. Linear projection of features is of particular interest for dimensionality reduction since it is simple to calculate and analytically analyze. In this paper, we propose an essentially linear projection technique, called locality-preserved maximum(More)
In this paper, we propose a new approach, called local and weighted maximum margin discriminant analysis (LWMMDA), to performing object discrimination. LWMMDA is a subspace learning method that identifies the underlying nonlinear manifold for discrimination. The goal of LWMMDA is to seek a transformation such that data points of different classes are(More)
Fisher linear discriminant analysis (LDA) is a classical subspace learning technique of extracting discriminative features for pattern recognition problems. The formulation of the Fisher criterion is based on the L2-norm, which makes LDA prone to being affected by the presence of outliers. In this paper, we propose a new method, termed LDA-L1, by maximizing(More)