Learn More
High expression of recombinant proteins in Escherichia coli (E. coli) often leads to protein aggregation. One popular approach to address this problem is the use of fusion tags (or partners) that improve the solubility of the proteins in question. However, such fusion tags are not effective for all proteins. In this study, we demonstrate that the(More)
BACKGROUND Jatropha curcas L., also called the Physic nut, is an oil-rich shrub with multiple uses, including biodiesel production, and is currently exploited as a renewable energy resource in many countries. Nevertheless, because of its origin from the tropical MidAmerican zone, J. curcas confers an inherent but undesirable characteristic (low cold(More)
Sequences described as chloroplast DNA replication origins were analysed in vivo by creating deletion and insertion mutants via plastid transformation in tobacco. Deletion of the described oriA sequence, which is located within the intron of the trnI gene, resulted in heteroplastomic transformants, when the selection marker was inserted within the intron.(More)
Maximization of the soluble protein expression in Escherichia coli (E. coli) via the fusion expression strategy is usually preferred for academic, industrial and pharmaceutical purposes. In this study, a set of distinct protein fusion partners were comparatively evaluated to promote the soluble expression of two target proteins including the bovine(More)
Preventing protein aggregation is crucial for various protein studies, and has a large potential for remedy of protein misfolding or aggregates-linked diseases. In this study, we demonstrated the hyper-acidic protein fusion partners, which were previously reported to enhance the soluble expression of aggregation-prone proteins, could also significantly(More)
Cytosolic ascorbate peroxidase 1 (APX1) plays a crucial role in regulating the level of plant cellular reactive oxygen species and its thermolability is proposed to cause plant heat-susceptibility. Herein, several hyper-acidic fusion partners, such as the C-terminal peptide tails, were evaluated for their effects on the thermal stability and activity of(More)
H(+)-pyrophosphatase (H(+)-PPase) is a primary pyrophosphate (PPi)-energized proton pump to generate electrochemical H(+) gradient for ATP production and substance translocations across membranes. It plays an important role in stress adaptation that was intensively substantiated by numerous transgenic plants overexpressing H(+)-PPases yet devoid of any(More)
Nowadays, SUMO fusion system is important for recombinant protein production in Escherichia coli, yet a few aspects remain to be improved, including the efficacy for vector construction and protein solubility. In this study, we found the SUMO gene Smt3 (Sm) of Saccharomyces cerevisiae conferred an unexpected activity of constitutive prokaryotic promoter(More)
Thermostable fusion peptide partners are valuable in engineering thermostability in proteins. We evaluated the Arabidopsis counterpart (AtRAce) and an acidified derivative (mRAce) of the conserved carboxyl extension (RAce) of plant Rubisco activase (RCA) for their thermostabilizing properties in Escherichia coli and Saccharomyces cerevisiae using a protein(More)