Learn More
In the cat, the motor representation in motor cortex develops between wk 8 and wk 13. Motor map development is accompanied by a decrease in the current thresholds for evoking movements with a concomitant increase in the number of effective sites, an increase in the distal representation, and the representation of multijoint synergies. In this study we used(More)
Early motor experiences have been shown to be important for the development of motor skills in humans and animals. However, little is known about the role of motor experience in motor system development. In this study, we address the question of whether early motor experience is important in shaping the development of the corticospinal (CS) tract. We(More)
During early postnatal development, corticospinal (CS) system stimulation, electrical or transcranial magnetic, is minimally effective in producing muscle contraction, despite having axon terminals that excite spinal neurons. Later, after stimulation becomes more effective, the cortical motor representation develops, and movements the system controls in(More)
We have developed an innovative way to establish a functional bridge around a spinal lesion. We disconnected the T13 nerve from its muscle targets, leaving the proximal end intact. The cut end was inserted either into an intact spinal cord, to assess regeneration of T13 axons into the cord and synapse formation with spinal neurons, or caudal to a(More)
The corticospinal system has a delayed and prolonged postnatal development. In the cat, lesion, inactivation, or stimulation of the system influence motor output minimally when corticospinal (CS) terminals have an immature topographic pattern but produce robust effects immediately after developing the mature pattern by weeks 6-7. In this study, we directly(More)
  • 1