Learn More
Since the initial description of induced pluripotent stem (iPS) cells created by forced expression of four transcription factors in mouse fibroblasts, the technique has been used to generate embryonic stem (ES)-cell-like pluripotent cells from a variety of cell types in other species, including primates and rat. It has become a popular means to reprogram(More)
Low reprogramming efficiency and reduced pluripotency have been the two major obstacles in induced pluripotent stem (iPS) cell research. An effective and quick method to assess the pluripotency levels of iPS cells at early stages would significantly increase the success rate of iPS cell generation and promote its applications. We have identified a conserved(More)
Somatic cell nuclear transfer (SCNT) has been successfully used in many species to produce live cloned offspring, albeit with low efficiency. The low frequency of successful development has usually been ascribed to incomplete or inappropriate reprogramming of the transferred nuclear genome. Elucidating the genetic differences between normal fertilized and(More)
Induced pluripotent stem cells (iPSCs) are considered to be an attractive alternative to embryonic stem cells (ESCs) and may provide great potential for clinical applications in regenerative medicine. Although possessing characteristics similar to ESCs, the true pluripotency of these newly studied iPSCs was not known because none of the previously developed(More)
Preimplantation genetic diagnosis (PGD), used in clinical practice, is offered to couples that may suffer from a monogenetic disorder, chromosome aneuploidy, or X-linked disease. However, blastomere biopsy, as an indispensable manipulation during the PGD procedure has not been assessed for its long term health implications. Using a mouse model, we(More)
Knockout Brown Norway (BN) rat could be a useful disease model for human disorders, however, a failure to derive embryonic stem (ES) cells disturbs the further development of the model. In this study, we reported a case of successful derivation of the BN rat ES cells with the derivation efficiency comparable to that of Sprague Dawley (SD) rats. The BN rat(More)
Dear Editor, Sperm transport in the female genital tract is physiologically important for mammalian fertilization. The female reproductive system contains multiple natural selective barriers, such as successful uterotubal junction (UTJ) migration and zona pellucida (ZP) binding, to ensure sperm with normal motility and morphology to transmit into oviduct(More)
Preimplantation genetic diagnosis (PGD) has gained widespread application in clinical medicine and hence the health of PGD offspring needs to be systematically assessed. Given the critical role of the stress response in growth and health, assessments of the development and function of the stress system might help to clarify the health outcomes of PGD. In(More)