Learn More
The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyzes the conversion of HMG-CoA to mevalonate (MVA), which is a rate-limiting step in the isoprenoid biosynthesis via the MVA pathway. In this study, the full-length cDNA encoding HMGR (designated as SmHMGR2, GenBank accession no. FJ747636) was isolated from Salvia miltiorrhiza by rapid amplification(More)
Ginsenosides are the primary bioactive components of ginseng, which is a popular medicinal herb and exhibits diverse pharmacological activities. Protopanaxadiol is the aglycon of several dammarane-type ginsenosides, which also has anticancer activity. For microbial production of protopanaxadiol, dammarenediol-II synthase and protopanaxadiol synthase genes(More)
OBJECTIVE To obtain geranylgeranyl diphosphate synthase gene of Salvia miltiorrhiza, and conduct bioinformatic and transcript expression analysis of the cloned SmGGPS1 gene. METHOD The degenerate primers were designed based on the conservative regions of GGPS protein sequences from public databases. The target gene was obtained from root of S.(More)
Traditionally, high-value metabolites have been produced through direct extraction from natural biological sources which are inefficient, given the low abundance of these compounds. On the other hand, these high-value metabolites are usually difficult to be synthesized chemically, due to their complex structures. In the last few years, the discovery of(More)
Ginsenosides are the primary bioactive components of ginseng, which is a popular medicinal plant that exhibits diverse pharmacological activities. Protopanaxadiol, protopanaxatriol and oleanolic acid are three basic aglycons of ginsenosides. Producing aglycons of ginsenosides in Saccharomyces cerevisiae was realized in this work and provides an alternative(More)
Metabolic engineering of microorganisms is an alternative and attractive route for production of valuable terpenoids that are usually extracted from plant sources. Tanshinones are the bioactive components of Salvia miltiorrhizha Bunge, which is a well-known traditional Chinese medicine widely used for treatment of many cardiovascular diseases. As a step(More)
The scientific essence of geoherbs bases on the attribute of matter. The phenotype of geoherbs from biological point view includes medicinal character, tissue structure, content and composition of the effective components and the therapeutic effect. The forming of geoherb is resulted from the interaction of genotype and environment. It can be expressed by(More)
Plant-derived natural products (PNPs) have been widely used in pharmaceutical and nutritional fields. So far, the main method to produce PNPs is extracting them from their original plants, however, there remains lots of problems. With the concept of synthetic biology, construction of yeast cell factories for production of PNPs provides an alternative way.(More)
β-carotene has a wide range of application in food, pharmaceutical and cosmetic industries. For microbial production of β-carotene in Saccharomyces cerevisiae, the supply of geranylgeranyl diphosphate (GGPP) was firstly increased in S. cerevisiae BY4742 to obtain strain BY4742-T2 through over-expressing truncated 3-hydroxy-3-methylglutaryl-CoA reductase(More)
Isopentenyl diphosphate isomerase (IPI) catalyzes the isomerization between the common terpene precursor substances isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) during the terpenoid biosynthesis process. In this study, tissue expression analysis revealed that the expression level of the Salvia miltiorrhiza IPI1 gene (SmIPI1) was(More)
  • 1