Learn More
Human Bestrophin 1 (hBest1) is a calcium-activated chloride channel that regulates neuronal excitability, synaptic activity, and retinal homeostasis. Mutations in hBest1 cause the autosomal-dominant Best macular dystrophy (BMD). Because hBest1 mutations cause BMD, but a knockout does not, we wondered if hBest1 mutants exert a dominant negative effect(More)
Activation of an innate immune response in airway epithelia by the human pathogen Pseudomonas aeruginosa requires bacterial expression of flagellin. Addition of flagellin (10(-7) M) to airway epithelial cell monolayers (Calu-3, airway serous cell-like) increased Cl(-) secretion (I(Cl)) beginning after 3-10 min, reaching a plateau after 20-45 min at(More)
Neither Pseudomonas aeruginosa nor flagellin affected cytosolic Ca(2+) concentration ([Ca](i)) in airway epithelial cell lines JME and Calu-3, but bacteria or flagellin activated NF-kappaB, IL-8 promoter, and IL-8 secretion. ATP (purinergic agonist) and thapsigargin (blocks Ca(2+) pump, releases endoplasmic reticulum Ca(2+), and triggers Ca(2+) entry(More)
We tested whether cystic fibrosis (CF) airway epithelia have larger innate immune responses than non-CF or cystic fibrosis transmembrane conductance regulator (CFTR)-corrected cells, perhaps resulting from ER stress due to retention of DeltaF508CFTR in the endoplasmic reticulum (ER) and activation of cytosolic Ca(2+) (Ca(i)) and nuclear factor (NF)-kappaB(More)
G protein-coupled receptors (GPCRs) mediate cellular responses to a wide variety of extracellular stimuli. GPCR dimerization may expand signaling diversity and tune functionality, but little is known about the mechanisms of subunit assembly and interaction or the signaling properties of heteromers. Using single-molecule subunit counting on class C(More)
Pseudomonas aeruginosa (PA) forms biofilms in lungs of cystic fibrosis (CF) patients, a process regulated by quorum-sensing molecules including N-(3-oxododecanoyl)-l-homoserine lactone (C12). C12 (10-100 µM) rapidly triggered events commonly associated with the intrinsic apoptotic pathway in JME (CF ΔF508CFTR, nasal surface) epithelial cells: depolarization(More)
Pseudomonas aeruginosa-induced activation of NF-kappaB and secretion of proinflammatory cytokines by airway epithelial cells require that the bacteria express flagellin. We tested whether P. aeruginosa and human airway epithelial cells secrete factors that modulated this response. Experiments were performed with both the Calu-3 cell line and primary(More)
Fu Z, Bettega K, Carroll S, Buchholz KR, Machen TE. Role of Ca in responses of airway epithelia to Pseudomonas aeruginosa, flagellin, ATP, and thapsigargin. Am J Physiol Lung Cell Mol Physiol 292: L353–L364, 2007. First published September 8, 2006; doi:10.1152/ajplung.00042.2006.—Neither Pseudomonas aeruginosa nor flagellin affected cytosolic Ca(More)
Pseudomonas aeruginosa use N-(3-oxododecanoyl)-homoserine lactone (C12) as a quorum-sensing molecule to regulate gene expression in the bacteria. It is expected that in patients with chronic infections with P. aeruginosa, especially as biofilms, local [C12] will be high and, since C12 is lipid soluble, diffuse from the airways into the epithelium and(More)
The roles of the Pseudomonas aeruginosa-derived pigment pyocyanin (PYO) as an oxidant and activator of the proinflammatory transcription factor NF-kappaB were tested in a cystic fibrosis (CF) airway epithelial cell line, CF15. 100 microm PYO on its own had no effect or only small effects to activate NF-kappaB (<1.5-fold), but PYO synergized with the TLR5(More)