Learn More
Foods high in resistant starch have the potential to improve human health and lower the risk of serious noninfectious diseases. RNA interference was used to down-regulate the two different isoforms of starch-branching enzyme (SBE) II (SBEIIa and SBEIIb) in wheat endosperm to raise its amylose content. Suppression of SBEIIb expression alone had no effect on(More)
Analysis of barley shrunken grain mutants has identified lines with a novel high amylose starch phenotype. The causal mutation is located at the sex6 locus on chromosome 7H, suggesting the starch synthase IIa (ssIIa) gene as a candidate gene altered by the mutation. Consistent with this hypothesis, no evidence of SSIIa protein expression in either the(More)
A role for the Escherichia coli glgX gene in bacterial glycogen synthesis and/or degradation has been inferred from the sequence homology between the glgX gene and the genes encoding isoamylase-type debranching enzymes; however, experimental evidence or definition of the role of the gene has been lacking. Construction of E. coli strains with defined(More)
The roles of starch branching enzyme (SBE, EC IIa and SBE IIb in defining the structure of amylose and amylopectin in barley (Hordeum vulgare) endosperm were examined. Barley lines with low expression of SBE IIa or SBE IIb, and with the low expression of both isoforms were generated through RNA-mediated silencing technology. These lines enabled(More)
During the early stages of seed development many genes are under dynamic regulation to ensure the proper differentiation and establishment of the tissue that will constitute the mature grain. To investigate how miRNA regulation contributes to this process in barley, a combination of small RNA and mRNA degradome analyses were used to identify miRNAs and(More)
Wheat and barley contain at least four classes of starch synthases in the endosperm, granule bound starch synthase I (GBSSI) and starch synthases I, II and III (SSI, SSII, SSIII). In this work, SSII in barley is shown to be associated with the starch granule by using antibodies. A cDNA from barley encoding SSII and the genes for SSII from barley and(More)
Chlamydomonas reinhardtii displays a diurnal rhythm of starch content that peaks in the middle of the night phase if the algae are provided with acetate and CO(2) as a carbon source. We show that this rhythm is controlled by the circadian clock and is tightly correlated to ADP-glucose pyrophosphorylase activity. Persistence of this rhythm depends on the(More)
The transitions from juvenile to adult and adult to reproductive phases of growth are important stages in the life cycle of plants. The regulators of these transitions include miRNAs, in particular miR156 and miR172 which are part of a regulatory module conserved across the angiosperms. In Arabidopsis miR171 represses differentiation of axillary meristems(More)
A novel mechanism for increasing vegetative biomass and grain yield has been identified in wheat (Triticum aestivum). RNAi-mediated down-regulation of Glucan, Water-Dikinase (GWD), the primary enzyme required for starch phosphorylation, under the control of an endosperm-specific promoter, resulted in a decrease in starch phosphate content and an increase in(More)
To examine the role of isoamylase1 (ISA1) in amylopectin biosynthesis in plants, a genomic DNA fragment from Aegilops tauschii was introduced into the ISA1-deficient rice (Oryza sativa) sugary-1 mutant line EM914, in which endosperm starch is completely replaced by phytoglycogen. A. tauschii is the D genome donor of wheat (Triticum aestivum), and the(More)