Zhongxiang Dai

  • Citations Per Year
Learn More
Convergent evidences have revealed that schizophrenia is associated with brain dysconnectivity, which leads to abnormal network organization. However, discrepancies were apparent between the structural connectivity (SC) and functional connectivity (FC) studies, and the relationship between structural and functional deficits in schizophrenia remains largely(More)
Although rest breaks are commonly administered as a countermeasure to reduce mental fatigue and boost cognitive performance, the effects of taking a break on behavior are not consistent. Moreover, our understanding of the underlying neural mechanisms of rest breaks and how they modulate mental fatigue is still rudimentary. In this study, we investigated the(More)
Restoring normal walking abilities following the loss of them is a challenge. Importantly, there is a growing need for a better understanding of brain plasticity and the neural involvements for the initiation and control of these abilities so as to develop better rehabilitation programmes and external support devices. In this paper, we attempt to identify(More)
Efficient classification of mental workload, an important issue in neuroscience, is limited, so far to single task, while cross-task classification remains a challenge. Furthermore, network approaches have emerged as a promising direction for studying the complex organization of the brain, enabling easier interpretation of various mental states. In this(More)
Numerous real-world systems can be modeled as networks. To date, most network studies have been conducted assuming stationary network characteristics. Many systems, however, undergo topological changes over time. Temporal networks, which incorporate time into conventional network models, are therefore more accurate representations of such dynamic systems.(More)
Numerous studies have revealed various working memory (WM)-related brain activities that originate from various cortical regions and oscillate at different frequencies. However, multi-frequency band analysis of the brain network in WM in the cortical space remains largely unexplored. In this study, we employed a graph theoretical framework to characterize(More)
The importance of understanding mental fatigue can be seen from many studies that started back in past decades. It is only until recent years has mental fatigue been explored through connectivity network analysis using graph theory. Although previous studies have revealed certain properties of the mental fatigue network via graph theory, some of these(More)
  • 1