Learn More
Microbial degradation plays a critical role in determining the environmental fate of steroid hormones, such as 17β-estradiol (E2). The molecular mechanisms governing the microbial transformation of E2 and its primary degradation intermediate, estrone (E1), are largely unknown. The objective of this study was to identify metabolism pathways that might be(More)
Estrogenic compounds in drinking water sources pose potential threats to human health. Treatment technologies are needed to effectively remove these compounds for the production of safe drinking water. In this study, GAC adsorption was first tested for its ability to remove a model estrogenic compound, 17β-estradiol (E2). Although GAC showed a relatively(More)
The primary goal of this study is to investigate ammonia removal, abundance of nitrifying bacteria and microbial community structures in a laboratory-scale integrated fixed film activated sludge (IFAS) reactor. The results of Illumina MiSeq sequencing based on 16S rRNA genes showed Proteobacteria and Bacteroidetes were the dominant phyla in both biofilm and(More)
The objective of this study is to characterize the removal of 17β-estradiol (E2) and the microbial community of a biologically active carbon (BAC) reactor under acetic acid or humic acid as the primary carbon source. Influent E2 concentration was maintained at 20 μg/L. Higher than 99 % removal of E2 was achieved by the BAC reactor. E2 concentration(More)
  • 1