Learn More
Ionic size effects are significant in many biological systems. Mean-field descriptions of such effects can be efficient but also challenging. When ionic sizes are different, explicit formulas in such descriptions are not available for the dependence of the ionic concentrations on the electrostatic potential, that is, there is no explicit Boltzmann-type(More)
Mosquitoes are insects of the Diptera, Nematocera, and Culicidae families, some species of which are important disease vectors. Identifying mosquito species based on morphological characteristics is difficult, particularly the identification of specimens collected in the field as part of disease surveillance programs. Because of this difficulty, we(More)
A model nanometer-sized hydrophobic receptor-ligand system in aqueous solution is studied by the recently developed level-set variational implicit solvent model (VISM). This approach is compared to all-atom computer simulations. The simulations reveal complex hydration effects within the (concave) receptor pocket, sensitive to the distance of the (convex)(More)
Central in the variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett.2006, 96, 087802 and J. Chem. Phys.2006, 124, 084905] of molecular solvation is a mean-field free-energy functional of all possible solute-solvent interfaces or dielectric boundaries. Such a functional can be minimized numerically by a level-set method(More)
Reconfigurable SRAM-based FPGAs are highly susceptible to radiation induced single-event upsets (SEUs) in space applications. The bit flip in FPGAs configuration memory may alter user circuit permanently without proper bitstream reparation, which is a completely different phenomenon from upsets in traditional memory devices. It is important to find the(More)
We present a field space based level set method for computing multi-valued solutions to one-dimensional Euler-Poisson equations. The system of these equations has many applications, and in particular arises in semiclassical approximations of the Schrödinger-Poisson equation. The proposed approach involves an implicit Eulerian formulation in an augmented(More)
The increasing prevalence of insecticide resistance in Anopheles sinensis, a major vector of malaria in Jiangsu province in eastern China, threatens to compromise the successful use of insecticides in malaria control strategies. It is therefore vital to understand the insecticide resistance status of An. sinensis in the region. This study examined the(More)
A novel Bloch band based level set method is proposed for computing the semiclassical limit of Schrödinger equations in periodic media. For the underlying equation, subject to a highly oscillatory initial data, a hybrid of the WKB approximation and homogenization leads to the Bloch eigenvalue problem and an associated Hamilton–Jacobi system for the phase in(More)
A level-set method is developed for the numerical minimization of a class of Had-wiger valuations with a potential on a set of three-dimensional bodies. Such valuations are linear combinations of the volume, surface area, and surface integral of mean curvature. The potential increases rapidly as the body shrinks beyond a critical size. The combination of(More)
The endoplasmic/sarcoplasmic reticulum (ER/SR) plays a crucial role in cytoplasmic signalling in a variety of cells. It is particularly relevant to skeletal muscle fibres, where this organelle constitutes the main Ca2+ store for essential functions, such as contraction. In this work, we expressed the cameleon biosensor D1ER by in vivo electroporation in the(More)