Zhongkui Luo

Learn More
Quantifying soil organic carbon (SOC) dynamics at a high spatial and temporal resolution in response to different agricultural management practices and environmental conditions can help identify practices that both sequester carbon in the soil and sustain agricultural productivity. Using an agricultural systems model (the Agricultural Production Systems(More)
Upscaling the results from process-based soil-plant models to assess regional soil organic carbon (SOC) change and sequestration potential is a great challenge due to the lack of detailed spatial information, particularly soil properties. Meta-modeling can be used to simplify and summarize process-based models and significantly reduce the demand for input(More)
Pool-based carbon (C) models are widely applied to predict soil C dynamics under global change and infer underlying mechanisms. However, it is unclear about the credibility of model-predicted C pool size, decay rate (k), and/or microbial C use efficiency (e) as only data on bulked total C is usually available for model constraining. Using observing system(More)
The amount of fresh carbon input into soil is experiencing substantial changes under global change. It is unclear what will be the consequences of such input changes on native soil carbon decomposition across ecosystems. By synthesizing data from 143 experimental comparisons, we show that, on average, fresh carbon input stimulates soil carbon decomposition(More)
The role and significance of physically protected soil organic carbon (SOC) in regulating SOC dynamics remains unclear. Here, we developed a simple theoretical model (DP model) considering dynamic physical protection to simulate the dynamics of protected (Cp ) and unprotected SOC (Cu ), and compared the modelling results with a conventional two-pool (fast(More)
Soil organic carbon (SOC) dynamics are regulated by the complex interplay of climatic, edaphic and biotic conditions. However, the interrelation of SOC and these drivers and their potential connection networks are rarely assessed quantitatively. Using observations of SOC dynamics with detailed soil properties from 90 field trials at 28 sites under different(More)
Global warming influences a series of ecological processes and ecosystems' stability. Although comprehensive studies have been done to investigate responses of various ecosystem processes to rising air temperatures, less is known about changes in soil temperatures and their impact on below-ground processes, particularly in deep layers. Herein, we used 50 y(More)
Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high(More)