Zhongjuan Wang

Learn More
Novel biodegradable polymersomes containing an ionizable membrane were developed for efficient loading and rapid intracellular release of proteins. The polymersomes were prepared from poly(ethylene glycol)-b-poly(trimethylene carbonate) (PEG-PTMC) block copolymer derivatives containing acrylate, carboxylic acid, and amine groups along PTMC block, which are(More)
Nanocarrier-mediated drug and gene delivery systems hold great promise for providing more refined delivery (especially in cancer treatments) to maximize therapeutic efficacy while minimizing unfavorable side effects. Despite their promise, the highly effective transport of therapeutics in vivo remains a challenge. Over the last 20years, there has been a(More)
Upregulation of vascular endothelial growth factor (VEGF) expression can inhibit intimal thickening after vascular injury. However, the lack of efficient gene delivery systems leads to insufficient VEGF expression, which prevents its application in gene therapy. In the present study, to improve the delivery of the plasmid vector with the VEGF gene(More)
pH and reduction dual-bioresponsive nanosized polymersomes based on poly(ethylene glycol)-SS-poly(2-(diethyl amino)ethyl methacrylate) (PEG-SS-PDEA) diblock copolymers were developed for efficient encapsulation and triggered intracellular release of proteins. PEG-SS-PDEA copolymers with PDEA-block molecular weights ranging from 4.7, 6.8, to 9.2 kg/mol were(More)
RNA interfere (RNAi)-based technology holds great promise in cancer treatment. The use of small interfering RNA (siRNA), however, is hampered by its low delivery efficiency in vivo when they are diluted in blood biofluids and in the presence of serum and salt. In this study, we developed the polyglutamate derivative polymer brush, poly(ethyleneglycol)(More)
A new kind of multi-function electric power quality calibration system based on virtual instrument is proposed in this article. This system integrates virtual instrument programming and power electronics together, generating diverse signals of current electric power quality field all-in one. The proposed system integrated signal generator unit can achieve(More)
Endosomal pH-activatable doxorubicin (DOX) prodrug nanogels were designed, prepared, and investigated for triggered intracellular drug release in cancer cells. DOX prodrugs with drug grafting contents of 3.9, 5.7, and 11.7 wt % (denoted as prodrugs 1, 2, and 3, respectively) were conveniently obtained by sequential treatment of poly(ethylene(More)
The capacity of natural killer (NK) cells to kill tumor cells without specific antigen recognition provides an advantage over T cells and makes them potential effectors for tumor immunotherapy. However, the efficacy of NK cell adoptive therapy can be limited by the immunosuppressive tumor microenvironment. Transforming growth factor-β (TGF-β) is a potent(More)
The extracellular stability versus intracellular drug release dilemma has been a long challenge for micellar drug delivery systems. Here, core-crosslinked pH-sensitive degradable micelles were developed based on poly(ethylene glycol)-b-poly(mono-2,4,6-trimethoxy benzylidene-pentaerythritol carbonate-co-acryloyl carbonate) (PEG-b-P(TMBPEC-co-AC)) diblock(More)
OBJECTIVE Previous studies have suggested that matrix metalloproteinase (MMP) inhibitor uptake may offer a precise estimation of MMP activity in atherosclerotic lesions. In this study, we explored the feasibility of noninvasive detection of MMP-9 activity using technetium-99m-labeled matrix metalloproteinase-9 antibody (Tc-McAb) in vivo. METHODS(More)
  • 1