Learn More
MicroRNAs are important gene regulators involved in many biological processes, including stemness maintenance and cellular reprogramming. Current methods used in loss-of-function studies of microRNAs mainly include locked nucleic acid (LNA) oligonucleotides and miRZip inhibitors, which have several limitations. Due to their unique gene structures and small(More)
The ubiquitination proteasome pathway has been demonstrated to regulate all plant developmental and signaling processes. E3 ligase/substrate-specific interactions and ubiquitination play important roles in this pathway. However, due to technical limitations only a few instances of E3 ligase-substrate binding and protein ubiquitination in plants have been(More)
miR-302/367 is the most abundant miRNA cluster in human embryonic stem cells (hESCs) and can promote somatic cell reprogramming. However, its role in hESCs remains poorly understood. Here, we studied functional roles of the endogenous miR-302/367 cluster in hESCs by employing specific TALE-based transcriptional repressors. We revealed that miR-302/367(More)
The C4 protein from Curtovirus is known as a major symptom determinant, but the mode of action of the C4 protein remains unclear. To understand the mechanism of involvement of C4 protein in virus-plant interactions, we introduced the C4 gene from Beet severe curly top virus (BSCTV) into Arabidopsis under a conditional expression promoter; the resulting(More)
Direct reprogramming of human somatic cells into induced pluripotent stem (iPS) cells by defined transcription factors (TFs) provides great potential for regenerative medicine and biomedical research. This procedure has many challenges, including low reprogramming efficiency, many partially reprogrammed colonies, somatic coding mutations in the genome, etc.(More)
Salt cress (Thellungiella halophila), a salt-tolerant relative of Arabidopsis, has turned to be an important model plant for studying abiotic stress tolerance. One binary bacterial artificial chromosome (BIBAC) library was constructed which represents the first plant-transformation-competent large-insert DNA library generated for Thellungiella halophila.(More)
Geminiviruses include a large number of single-stranded DNA viruses that are emerging as useful tools to dissect many fundamental processes in plant hosts. However, there have been no reports yet regarding the genetic dissection of the geminivirus-plant interaction. Here, a high-throughput approach was developed to screen Arabidopsis activation-tagged(More)
BACKGROUND Beet severe curly top virus (BSCTV) is a leafhopper transmitted geminivirus with a monopartite genome. C4 proteins encoded by geminivirus play an important role in virus/plant interaction. METHODS AND FINDINGS To understand the function of C4 encoded by BSCTV, two BSCTV mutants were constructed by introducing termination codons in ORF C4(More)
To examine whether the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a key regulator linking angiogenesis and metabolism, could enhance the engraftment and angiogenesis of mesenchymal stem cells (MSCs) in diabetic hindlimb ischemia, we engineered the overexpression of PGC-1α within MSCs using an adenoviral vector encoding green(More)
Foxm1, a mammalian Forkhead Box M1 protein, is known as a typical proliferation-associated transcription factor. Here, we find that Foxm1 was essential for maintenance of hematopoietic stem cell (HSC) quiescence and self-renewal capacity in vivo in mice. Reducing expression of FOXM1 also decreased quiescence in human CD34 + HSCs and progenitor cells and its(More)