Learn More
The improvements in the flow and packing of fine pharmaceutical powder blends due to dry coating of micronized acetaminophen (mAPAP, ∼11μm), a model poorly flowing drug, are quantified. Poor flow and packing density of fine excipients (∼20μm) allowed testing the hypothesis that dry coating of cohesive API may counteract poor flow and packing of fine(More)
Content uniformity of low dose blends with fine active pharmaceutical ingredients (API) is adversely impacted due to API agglomeration caused by high powder cohesion. Dry coating using high-intensity vibratory mixing is employed to reduce API cohesion and granular Bond number as well as agglomeration as predicted by contact models, hence improve blend(More)
In a recent study, it was demonstrated that improving flow of a model poorly flowing and poorly compactable drug substance, acetaminophen, via dry coating while using fine excipients, may promote direct compression. To validate this novel strategy, particularly for high drug-loading formulations, this study investigates the effect of microcrystalline(More)
Pharmaceutical powders are very prone to electrostatic charging by colliding and sliding contacts. In pharmaceutical formulation processes, particle charging is often a nuisance and can cause problems in the manufacture of products, such as affecting powder flow, fill, and dose uniformity. For a fundamental understanding of the powder triboelectrification,(More)
  • 1