Learn More
Human craniosynostosis syndromes, resulting from activating or neomorphic mutations in fibroblast growth factor receptor 2 (FGFR2), underscore an essential role for FGFR2 signaling in skeletal development. Embryos harboring homozygous null mutations in FGFR2 die prior to skeletogenesis. To address the role of FGFR2 in normal bone development, a conditional(More)
Fibroblast growth factor 18 (FGF18) has been shown to regulate chondrocyte proliferation and differentiation by signaling through FGF receptor 3 (FGFR3) and to regulate osteogenesis by signaling through other FGFRs. Fgf18(-/-) mice have an apparent delay in skeletal mineralization that is not seen in Fgfr3(-/-) mice. However, this delay in mineralization(More)
Gain of function mutations in fibroblast growth factor (FGF) receptors cause chondrodysplasia and craniosynostosis syndromes. The ligands interacting with FGF receptors (FGFRs) in developing bone have remained elusive, and the mechanisms by which FGF signaling regulates endochondral, periosteal, and intramembranous bone growth are not known. Here we show(More)
An imbalance between the rate of protein synthesis and folding capacity of the endoplasmic reticulum (ER) results in stress that has been increasingly implicated in pancreatic islet beta-cell apoptosis and diabetes. Because insulin/IGF/Akt signaling has been implicated in beta-cell survival, we sought to determine whether this pathway is involved in ER(More)
Despite treatment with agents that enhance beta-cell function and insulin action, reduction in beta-cell mass is relentless in patients with insulin resistance and type 2 diabetes mellitus. Insulin resistance is characterized by impaired signaling through the insulin/insulin receptor/insulin receptor substrate/PI-3K/Akt pathway, leading to elevation of(More)
AIMS/HYPOTHESIS Glycogen synthase kinase-3 (GSK3) has been implicated in the pathophysiology of several prevalent diseases, including diabetes. However, despite recent progress in our understanding of the role of GSK3 in the regulation of glucose metabolism in peripheral tissues, the involvement of GSK3 in islet beta cell growth and function in vivo is(More)
There is a large demand for new bone regeneration to restore the function during bone injuries. Bone filling materials are important in bone tissue restoration. In this study, the demineralized bone matrix (DBM) was activated with the engineering human bone morphogenetic protein-2 (BMP-2). To enhance the binding of BMP-2 to the DBM scaffolds, a(More)
The binding affinity between a nuclear localization signal (NLS) and its import receptor is closely related to corresponding nuclear import activity. PTM-based modulation of the NLS binding affinity to the import receptor is one of the most understood mechanisms to regulate nuclear import of proteins. However, identification of such regulation mechanisms is(More)
The use of electronic signature concerns various types of cyber behaviors in the daily life. The present paper aimed to make contributions to the literature by describing various problematic cyber behaviors in the implementation of e-signature laws. As one of the earliest attempts to examine e-signature behaviors from the legal perspective, this paper used(More)