Zhongfei Zhang

Learn More
Clustering on multi-type relational data has attracted more and more attention in recent years due to its high impact on various important applications, such as Web mining, e-commerce and bioinformatics. However, the research on general multi-type relational data clustering is still limited and preliminary. The contribution of the paper is three-fold.(More)
Dyadic data matrices, such as co-occurrence matrix, rating matrix, and proximity matrix, arise frequently in various important applications. A fundamental problem in dyadic data analysis is to find the hidden block structure of the data matrix. In this paper, we present a new co-clustering framework, block value decomposition(BVD), for dyadic data, which(More)
Visual object tracking is a significant computer vision task which can be applied to many domains, such as visual surveillance, human computer interaction, and video compression. Despite extensive research on this topic, it still suffers from difficulties in handling complex object appearance changes caused by factors such as illumination variation, partial(More)
Color histogram is an important technique for color image database indexing and retrieving. In this paper, traditional color histogram is modified to capture spatial layout information of each color and three types spatial color histograms are introduced: annular, angular and hybrid color histograms. Experiments show that with a proper trade-off between the(More)
Trajectory analysis is the basis for many applications, such as indexing of motion events in videos, activity recognition, and surveillance. In this paper, the Dirichlet process mixture model (DPMM) is applied to trajectory clustering, modeling, and retrieval. We propose an incremental version of a DPMM-based clustering algorithm and apply it to cluster(More)
In multimedia information retrieval, most classic approaches tend to represent different modalities of media in the same feature space. Existing approaches take either one-to-one paired data or uni-directional ranking examples (i.e., utilizing only text-query-image ranking examples or image-query-text ranking examples) as training examples, which do not(More)
This work addresses content based image retrieval (CBIR), focusing on developing a hidden semantic concept discovery methodology to address effective semantics-intensive image retrieval. In our approach, each image in the database is segmented to region; associated with homogenous color, texture, and shape features. By exploiting regional statistical(More)
Learning communities from a graph is an important problem in many domains. Different types of communities can be generalized as link-pattern based communities. In this paper, we propose a general model based on graph approximation to learn link-pattern based community structures from a graph. The model generalizes the traditional graph partitioning(More)