Learn More
Correlations between temporal fluctuations in MRI signals may reveal functional connectivity between brain regions within individual subjects. Such correlations would be especially useful indices of functional connectivity if they covary with behavioral performance or other subject variables. This study investigated whether such a relationship could be(More)
Silibinin is an active constituent extracted from the blessed milk thistle (Silybum marianum). In a previous study, we demonstrated that silibinin treatment induced the generation of reactive nitrogen species (RNS), which were associated with reactive oxygen species (ROS), and caused apoptosis and autophagy in HeLa cells. Another study reported that(More)
A direct aldol reaction of an α-azido 7-azaindolinylamide, promoted by a Cu-based cooperative catalyst, is documented. Aromatic aldehydes bearing an ortho substituent exhibited diastereodivergency depending on the nature of the chiral ligands used. Smooth reactions with ynals highlighted the broad substrate scope. A vicinal azido alcohol unit in the product(More)
Nickel(0)-promoted carboxylation of aryl ynol ether proceeded in a highly regioselective manner to produce α-substituted-β-aryloxyacrylic acid derivatives. The α-substituted-β-aryloxyacrylic acids were transformed into the corresponding β-aryloxypropionic acid derivative as an optically active form via rhodium-catalyzed asymmetric hydrogenation.
An α-N3 7-azaindoline amide serves as a latent enolate to directly engage in an asymmetric Mannich-type reaction with N-thiophosphinoyl imines by the action of a cooperative catalyst. The thus-obtained highly enantioenriched anti-adduct was transformed into β-amino-α-azido acid in high yield by simple acidic treatment.
Direct coupling of ethers and acyl halides was promoted by a binary catalytic system comprising an Ir-based photocatalyst and a Ni complex under blue-light irradiation. Photocatalysts with high triplet energy directed the catalysis, and the reaction likely proceeded by triplet-triplet energy transfer from the excited photocatalysts. Chlorine radicals(More)
  • 1