Learn More
A sensitive and selective fluorescent membrane for rapid detection of trace 2,2',4,5,5'-pentachlorinated biphenyl (PCB101) has been achieved by immobilizing the fluorophore phenyl isothiocyanate (PITC) onto porous anodic aluminium oxide (AAO) membrane (denoted as PITC@AAO). The fluorescence of the PITC@AAO membrane is obviously enhanced after titrating the(More)
A facile fabrication approach of large-scale flexible films is reported, with one surface side consisting of Ag-nanoparticle (Ag-NP) decorated polyacrylonitrile (PAN) nanohump (denoted as Ag-NPs@PAN-nanohump) arrays. This is achieved via molding PAN films with ordered nanohump arrays on one side and then sputtering much smaller Ag-NPs onto each of the(More)
A hierarchically ordered array of Ag-nanorod bundles is achieved using an inexpensive binary-template-assisted electrodeposition technique. In every bundle, many small gaps are formed between adjacent Ag-nanorods, where "hot spots" are generated. As a result, this plasmonic nanostructure exhibits SERS enhancements of approximately eight orders of magnitude(More)
We report on the large-scale synthesis of Ag-nanoparticle (Ag-NP) decorated ZnO-mesoporous-nanosheets (NSs) grafted on a flexible carbon fiber cloth (CFC), as sensitive and reproducible surface enhanced Raman scattering (SERS) substrates with excellent flexibility. The composite SERS-substrates are achieved by a combination of atomic layer deposition of(More)
Surface-enhanced Raman scattering (SERS) is considered to be an excellent candidate for analytical detection schemes, because of its molecular specificity, rapid response and high sensitivity. Here, SERS-substrates of Ag-nanoparticle (Ag-NP) decorated Ge-nanotapers grafted on hexagonally ordered Si-micropillar (denoted as Ag-NP@Ge-nanotaper/Si-micropillar)(More)
SERS up: Ag nanosheet-assembled structures with controlled morphologies were achieved on indium tin oxide substrates by galvanic-cell-induced growth (see figure). These structures exhibit a highly active and homogeneous surface-enhanced Raman scattering (SERS) effect, and show promising potential as reliable SERS substrates for detection of trace(More)
A simple and efficient self-approach strategy was used to apply ultrasensitivity and self-revive ZnO-Ag hybrid surface-enhanced Raman scattering (SERS) sensors for the highly sensitive and selective detection of explosive TNT in both solution and vapour conditions. The good ultrasensitive sensing performance is a result of the abundant Raman hot spots,(More)
In this work, for the first time, microwave-assisted extraction (MAE) followed by CE was developed for the fast analysis of catechin and epicatechin in green tea. In the proposed method, catechin and epicatechin in green tea samples were rapidly extracted by MAE technique, and then analyzed by CE. The MAE conditions and the method's validation were studied.(More)
In this work, magnetic multiwalled carbon nanotubes were synthesized through a facile hydrothermal process, and then successfully used as magnetic solid-phase extraction sorbents for the determination of p-hydroxybenzoates in beverage. The prepared magnetic multiwalled carbon nanotubes presented both satisfactory superparamagnetism and strong capacity of(More)
An ordered array of hierarchically-structured core-nanosphere@space-layer@shell-nanoparticles has been fabricated for surface-enhanced Raman scattering (SERS) detection. To fabricate this hierarchically-structured chip, a long-range ordered array of Au/Ag-nanospheres is first patterned in the nano-bowls on the planar surface of ordered nanoporous anodic(More)