Zhong-Xian Huang

Learn More
Formation constants for the calcium(II), copper(II), iron(II), magnesium(II), manganese(II) and zinc(II) complexes ofdl-NN'-dicarboxamidomethyl-NN'-dicarboxymethyl-1,2-diaminopropane (ICRF 198) and the 1,2-diamino-butane homologue (ICRF 226) have been measured potentiometrically at 37°C andI=150 mmol dm−3 [NaCl]. The constants are used in computer(More)
The β-amyloid peptide (Aβ) aggregation in the brain, known as amyloid plaques, is a hallmark of Alzheimer’s disease (AD). The aberrant interaction of Cu2+ ion with Aβ potentiates AD by inducing Aβ aggregation and generating neurotoxic reactive oxygen species (ROS). In this study, the biosynthesized recombinant Aβ1–40 was, for the first time, used to(More)
1D and 2D (1)H NMR were employed to probe the effects on the heme microenvironment of cytochrome b(5) caused by the mutation from Val45 to Tyr45, His45 and Glu45. Compared with wild type (WT) cytochrome b(5), in all mutants the heme ring are CCW rotated relative to the imidazole planes of axial ligands and the angles beta between two axial ligand imidazole(More)
Aggregation and cytotoxicity of Aβ with redox-active metals in neuronal cells have been implicated in the progression of Alzheimer disease. Human metallothionein (MT) 3 is highly expressed in the normal human brain and is downregulated in Alzheimer disease. Zn7MT3 can protect against the neuronal toxicity of Aβ by preventing copper-mediated Aβ aggregation,(More)
Neuronal growth-inhibitory factor (GIF), also named metallothionein-3, inhibits the outgrowth of neuronal cells. Recent studies on the structure of human GIF, carried out using NMR and molecular dynamics simulation techniques, have been summarized. By studying a series of protein-engineered mutants of GIF, we showed that the bioactivity of GIF is modulated(More)
To convert cyt c into a peroxidase-like metalloenzyme, the P71H mutant was designed to introduce a distal histidine. Unexpectedly, its peroxidase activity was found even lower than that of the native, and that the axial ligation of heme iron was changed to His71/His18 in the oxidized state, while to Met80/His18 in the reduced state, characterized by(More)
The cytochrome P450 (CYP) superfamily plays a key role in the oxidative metabolism of a wide range of drugs and exogenous chemicals. CYP2C8 is the principal enzyme responsible for the metabolism of the anti-cancer drug paclitaxel in the human liver. Nearly all previous works about polymorphic variants of CYP2C8 were focused on unpurified proteins, either(More)
Metallothioneins (MTs) are metal-binding proteins with low molecular weight and conservative cysteine residues. Metallothionein-4 (MT-4), one of MT isoforms, is first reported to be distributed in a tissue-specific manner, mainly in stratified squamous epithelia. Here, we compare the properties of metal-thiolate clusters in MT-4 to those in MT-1 and MT-3,(More)
The Wood-Ljungdahl pathway is responsible for acetyl-CoA biosynthesis and used as a major mean of generating energy for growth in some anaerobic microbes. Series of genes, from the anaerobic human pathogen Clostridium difficile, have been identified that show striking similarity to the genes involved in this pathway including methyltetrahydrofolate- and(More)
The gene coding for the lipase-solubilized bovine liver microsomal cytochrome b5 (cyt b5) was expressed in Escherichia coli BL21 cells as a glutathione S-transferase fusion protein (GST-cyt b5) using the constructed expression vector pGEX-cyt b). The GST-cyt b5 fusion protein can be matured in vivo as a holoprotein with heme incorporated into cyt b5 during(More)