Zhong-Xian Huang

Learn More
Aggregation and cytotoxicity of Aβ with redox-active metals in neuronal cells have been implicated in the progression of Alzheimer disease. Human metallothionein (MT) 3 is highly expressed in the normal human brain and is downregulated in Alzheimer disease. Zn7MT3 can protect against the neuronal toxicity of Aβ by preventing copper-mediated Aβ aggregation,(More)
To convert cyt c into a peroxidase-like metalloenzyme, the P71H mutant was designed to introduce a distal histidine. Unexpectedly, its peroxidase activity was found even lower than that of the native, and that the axial ligation of heme iron was changed to His71/His18 in the oxidized state, while to Met80/His18 in the reduced state, characterized by(More)
Alzheimer's disease is characterized by progressive loss of neurons accompanied by the formation of intraneural neurofibrillary tangles and extracellular amyloid plaques. Human neuronal growth inhibitory factor, classified as metallothionein-3 (MT-3), was found to be related to the neurotrophic activity promoting cortical neuron survival and dendrite(More)
The catalytic activity of cytochrome c (cyt c) to peroxidize cardiolipin to its oxidized form is required for the release of pro-apoptotic factors from mitochondria, and for execution of the subsequent apoptotic steps. However, the structural basis for this peroxidation reaction remains unclear. In this paper, we determined the three-dimensional NMR(More)
Soluble guanylate cyclase (sGC) mediates NO signaling for a wide range of physiological effects in the cardiovascular system and the central nervous system. The α1β1 isoform is ubiquitously distributed in cytosolic fractions of tissues, whereas α2β1 is mainly found in the brain. The major occurrence and the unique characteristic of human sGC α2β1 indicate a(More)
Neuronal growth inhibitory factor (GIF), also known as metallothionein (metallothionein-3), impairs the survival and neurite formation of cultured neurons. It is known that the α-β domain-domain interaction of hGIF is crucial to the neuron growth inhibitory bioactivity although the exact mechanism is not clear. Herein, the β(MT3)-β(MT3) mutant and the(More)
Neuronal growth inhibitory factor (GIF), also known as metallothionein (metallothionein-3), impairs the survival and neurite formation of cultured neurons. It is known that the alpha-beta domain-domain interaction of hGIF is crucial to the neuron growth inhibitory bioactivity although the exact mechanism is not clear. Herein, the beta(MT3)-beta(MT3) mutant(More)
  • 1