Zhong-Lin Lu

Learn More
Risky decision-making is significantly affected by homeostatic states associated with different prior risk experiences, yet the neural mechanisms have not been well understood. Using functional MRI, we examined how gambling decisions and their underlying neural responses were modulated by prior risk experiences, with a focus on the insular cortex since it(More)
The involvement of the left hemisphere occipito-temporal (OT) junction in reading has been established, yet there is current controversy over the region's specificity for reading and the nature of its role in the reading process. Recent neuroimaging findings suggest that the region is sensitive to orthographic familiarity [Kronbichler, M., Bergmann, J.,(More)
Spaced learning usually leads to better recognition memory as compared with massed learning, yet the underlying neural mechanisms remain elusive. One open question is whether the spacing effect is achieved by reducing neural repetition suppression. In this fMRI study, participants were scanned while intentionally memorizing 120 novel faces, half under the(More)
Behavioral studies have shown for decades that humans are sensitive to risk when making decisions. More recently, brain activities have been shown to be correlated with risky choices. But an important gap needs to be filled: How does the human brain learn which decisions are risky? In cognitive neuroscience, reinforcement learning has never been used to(More)
Being able to envision emotional events that might happen in the future has a clear adaptive value. This study addressed the functional neuroanatomy of this process and investigated whether it is modulated by temporal distance. Participants imagined positive and negative events pertaining to the near future or far future while their brain activity was(More)
On the basis of results from behavioral studies that spatial attention improves the exclusion of external noise in the target region, we predicted that attending to a spatial region would reduce the impact of external noise on the BOLD response in corresponding cortical areas, seen as reduced BOLD responses in conditions with large amounts of external noise(More)
Experimentation is at the core of research in the behavioral and neural sciences, yet observations can be expensive and time-consuming to acquire (e.g., MRI scans, responses from infant participants). A major interest of researchers is designing experiments that lead to maximal accumulation of information about the phenomenon under study with the fewest(More)
An intriguing discovery in recent years is that resting-state functional connectivity (RSFC) is associated with cognitive performance. The current study investigated whether RSFC within the reading network was correlated with Chinese adults' reading abilities in their native language (L1, Chinese) and second language (L2, English). Results showed that RSFC(More)
Previous functional neuroimaging studies have shown that the left mid-fusiform cortex plays a critical role in reading. However, there is very limited research relating this region's anatomical structure to reading performance either in native or second language. Using structural MRI and three reading tasks (Chinese characters, English words, and alphabetic(More)
PURPOSE To correct distortions caused by eddy currents induced by large diffusion gradients during high angular resolution diffusion imaging without any auxiliary reference scans. MATERIALS AND METHODS Image distortion parameters were obtained by image coregistration, performed only between diffusion-weighted images with close diffusion gradient(More)