Learn More
Ascorbic acid (Asc) is a major antioxidant in plants that detoxifies reactive oxygen species (ROS) and maintains photosynthetic function. Expression of dehydroascorbate reductase (DHAR), responsible for regenerating Asc from an oxidized state, regulates the cellular Asc redox state, which in turn affects cell responsiveness and tolerance to environmental(More)
Vitamin C (ascorbic acid) is essential to prevent disease associated with connective tissue (e.g., scurvy), improves cardiovascular and immune cell functions, and is used to regenerate alpha-tocopherol (vitamin E). In contrast to most animals, humans lack the ability to synthesize ascorbic acid as a result of a mutation in the last enzyme required for(More)
Recent genomic analyses of pathologically defined tumor types identify "within-a-tissue" disease subtypes. However, the extent to which genomic signatures are shared across tissues is still unclear. We performed an integrative analysis using five genome-wide platforms and one proteomic platform on 3,527 specimens from 12 cancer types, revealing a unified(More)
Ascorbic acid (Asc) is the most abundant antioxidant in plants and serves as a major contributor to the cell redox state. Exposure to environmental ozone can cause significant damage to plants by imposing conditions of oxidative stress. We examined whether increasing the level of Asc through enhanced Asc recycling would limit the deleterious effects of(More)
H(2)O(2) serves an important stress signaling function and promotes stomatal closure, whereas ascorbic acid (Asc) is the major antioxidant that scavenges H(2)O(2). Dehydroascorbate reductase (DHAR) catalyzes the reduction of dehydroascorbate (oxidized ascorbate) to Asc and thus contributes to the regulation of the Asc redox state. In this study, we observed(More)
Cerebral ischemia-reperfusion (I-R) is a complex pathological process. Although autophagy can be evoked by ischemia, its involvement in the reperfusion phase after ischemia and its contribution to the fate of neurons remains largely unknown. In the present investigation, we found that autophagy was activated in the reperfusion phase, as revealed in both(More)
Angiogenesis, the formation of new blood vessels from the pre-existing vasculature, is a complex multistage process regulated by a number of signal transduction pathways. Accumulating evidence suggests that signal transducer and activator of transcription (STATs), mainly STAT3, play an important role in angiogenesis under both physiological and pathological(More)
The human orthologue of the H(+)-coupled amino acid transporter (hPAT1) was cloned from the human intestinal cell line Caco-2 and its functional characteristics evaluated in a mammalian cell heterologous expression system. The cloned hPAT1 consists of 476 amino acids and exhibits 85 % identity with rat PAT1. Among the various human tissues examined by(More)
The Retinoblastoma (Rb) protein is a conserved repressor of cell proliferation. In animals and plants, deregulation of Rb protein causes hyperproliferation and perturbs cell differentiation to various degrees. However, the primary developmental impact of the loss of Rb protein has remained unclear. In this study we investigated the direct consequences of Rb(More)
In this study, we indentified 15 sucrose synthase (SS) genes in Populus and the results of RT-qPCR revealed that their expression patterns were constitutive and partially overlapping but diverse. The release of the most recent Populus genomic data in Phytozome v9.1 has revealed the largest SS gene family described to date, comprising 15 distinct members.(More)