Learn More
Clonorchis sinensis (C. sinensis), an important food-borne parasite that inhabits the intrahepatic bile duct and causes clonorchiasis, is of interest to both the public health field and the scientific research community. To learn more about the migration, parasitism and pathogenesis of C. sinensis at the molecular level, the present study developed an(More)
Clonorchiasis, caused by direct and continuous contact with Clonorchis sinensis, is associated with hepatobiliary damage, inflammation, periductal fibrosis, and the development of cholangiocarcinoma. Hepatic stellate cells respond to liver injury through production of proinflammatory mediators which drive fibrogenesis; however, their endogenous sources and(More)
Caused by the consumption of raw or undercooked freshwater fish containing infective metacercariae of Clonorchis sinensis, human clonorchiasis remains a major public health problem in China. In previous study, we had expressed enolase from C. sinensis (CsENO) on the surface of Bacillus subtilis spore and the recombinant spore induced a pronounced protection(More)
Clonorchis sinensis (C. sinensis) inhabits in bile duct of the host. However, the mechanisms involved in why C. sinensis can survive in the bile environment containing lipids have not yet been explored. In this study, C. sinensis acetoacetyl-CoA thiolase (CsACAT), a member of the thiolase family which has a key role in the beta oxidation pathway of fatty(More)
BACKGROUND Approximately 35 million people are infected with Clonorchis sinensis (C. sinensis) globally, of whom 15 million are in China. Glycolytic enzymes are recognized as crucial molecules for trematode survival and have been targeted for vaccine and drug development. Hexokinase of C. sinensis (CsHK), as the first key regulatory enzyme of the glycolytic(More)
The Rabs act as a binary molecular switch that utilizes the conformational changes associated with the GTP/GDP cycle to elicit responses from target proteins. It regulates a broad spectrum of cellular processes including cell proliferation, cytoskeletal assembly, and intracellular membrane trafficking in eukaryotes. The Rab8 from Clonorchis sinensis(More)
Fructose-1,6-bisphosphate aldolase (FbA) is a ubiquitous enzyme in glycolysis. In the present study, we screened out three distinct genes encoding FbA isozymes (CsFbAs, CsFbA-1/2/3) from Clonorchis sinensis (C. sinensis) and characterized their sequences and structures profiles as well as biochemical properties. The amino acid sequences of CsFbAs shared(More)
Although prior studies confirmed that group III secretory phospholipase A2 of Clonorchis sinensis (CsGIIIsPLA2) had stimulating effect on liver fibrosis by binding to LX-2 cells, large-scale expression of recombinant protein and its function in the progression of hepatoma are worth exploring. Because of high productivity and low lipopolysaccharides (LPS) in(More)
  • 1