Learn More
The mechanism by which CD4 T cells are depleted in HIV-infected hosts remains poorly understood. In ex vivo cultures of human tonsil tissue, CD4 T cells undergo a pronounced cytopathic response following HIV infection. Strikingly, >95% of these dying cells are not productively infected but instead correspond to bystander cells. We now show that the death of(More)
Human immunodeficiency virus type 1 (HIV-1) transcriptional transactivator (Tat) recruits the positive transcription elongation factor b (P-TEFb) to the viral promoter. Consisting of cyclin dependent kinase 9 (Cdk9) and cyclin T1, P-TEFb phosphorylates RNA polymerase II and the negative transcription elongation factor to stimulate the elongation of HIV-1(More)
The 7SK snRNP represents a major reservoir of activity where P-TEFb, a general transcription factor key for RNA polymerase II elongation, can be withdrawn to promote gene expression, cell growth and development. Within this complex, 7SK snRNA is a central scaffold that coordinates key protein-protein interactions and maintains P-TEFb in an inactive state.(More)
Through Silicon Via (TSV) based 3D integration technology is a promising technology to increase the performance of FPGAs by achieving shorter global wire-length and higher logic density. However, 3D FPGAs also suffer from severe thermal problems due to the increase in power density and thermal resistance. Moreover, past work has shown that leakage power can(More)
Three-dimensional integration enables stacking DRAM on top of CPU, providing high bandwidth and short latency. However, non-uniform voltage fluctuation and local thermal hotspot in CPU layers are coupled into DRAM layers, causing a non-uniform bit-cell leakage (thereby bit flip) distribution. We propose a performance-power-resilience simulation framework to(More)