Learn More
The ability to design thermostable proteins offers enormous potential for the development of novel protein bioreagents. In this work, a combined computational and experimental method was developed to increase the T m of the flavin mononucleotide based fluorescent protein Bacillus Subtilis YtvA LOV domain by 31 Celsius, thus extending its applicability in(More)
One important feature of hydrolysis of cellulose by cellulases is that the reaction slows down quickly after it starts. In this work, we investigate the slowdown mechanism at the early stage of the reaction using endoglucanase Tr. Cel5A-catalyzed phosphate acid-swollen cellulose (PASC) hydrolysis as a model system. Specifically, we focus on the effect of(More)
Hydrogen bonds or salt bridges are usually formed to stabilize the buried ionizable residues. However, such interactions do not exist for two buried residues D271 and E305 of Trichoderma reesei Cel5A, an endoglucanase. Mutating D271 to alanine or leucine improves the enzyme thermostability quantified by the temperature T50 due to the elimination of the(More)
Trichoderma reesei (Tr.) cellulases, which convert cellulose to reducing sugars, are a promising catalyst used in the lignocellulosic biofuel production. Improving Tr. cellulases activity, though very difficult, is highly desired due to the recalcitrance of lignocellulose. Meanwhile, it is preferable to enhance the cellulase's promiscuity so that substrates(More)
  • 1