Learn More
Algal biofuel production has gained a renewed interest in recent years but is still not economically feasible due to several limitations related to algal culture. The objective of this study is to explore a novel attached culture system for growing the alga Chlorella sp. as biodiesel feedstock, with dairy manure wastewater being used as growth medium. Among(More)
Crude glycerol is the primary byproduct of the biodiesel industry. Producing docosahexaenoic acid (DHA, 22:6 n-3) through fermentation of the alga Schizochytrium limacinum on crude glycerol provides a unique opportunity to utilize a large quantity of this byproduct. The objective of this work is to investigate the effects of impurities contained in the(More)
Cellulase production by the fungi Trichoderma reesei was studied using dairy manure as a substrate. Data showed that T. reesei RUT-C30 had higher cellulase production than T. reesei QM 9414 and that a homogenized manure, treated by a blender to reduce fiber size, led to higher cellulase production. The cellulase production was further optimized by growing(More)
This work aimed to develop a rotating algal biofilm (RAB) cultivation system that can be widely adopted by microalgae producers for easy biomass harvest. Algal cells were grown on the surface of a material rotating between nutrient-rich liquid and CO2-rich gaseous phase. Scrapping biomass from the attached surface avoided the expensive harvest operations(More)
Crude glycerol is a major byproduct for the biodiesel industry. Producing value-added products through microbial fermentation on crude glycerol provides opportunities to utilize a large quantity of this byproduct. The objective of this study is to explore the potential of using crude glycerol for producing eicosapentaenoic acid (EPA, 20:5 n-3) by the fungus(More)
A cellulase production process was developed by growing the fungi Trichoderma reesei and Aspergillus phoenicis on dairy manure. T. reesei produced a high total cellulase titer (1.7 filter paper units [FPU]/mL, filter paper activity) in medium containing 10 g/L of manure (dry basis [w/w]), 2 g/L KH2PO4, 2 mL/L of Tween-80, and 2mg/L of CoCl2. However,(More)
Thermochemical processing of biomass by fast pyrolysis provides a nonenzymatic route for depolymerization of biomass into sugars that can be used for the biological production of fuels and chemicals. Fermentative utilization of this bio-oil faces two formidable challenges. First is the fact that most bio-oil-associated sugars are present in the anhydrous(More)
Current algal cultivation has been mainly performed in open ponds or photobioreactors in which algal cells are suspended and harvested through flocculation and centrifugation. A unique attachment based Revolving Algal Biofilm (RAB) cultivation system was recently developed for easy biomass harvest with enhanced biomass productivity. The objective of this(More)
Anaerobic digestion and struvite precipitation are two effective ways of treating dairy manure for recovering biogas and phosphorus. Anaerobic digestion of dairy manure is commonly limited by slow fiber degradation, while struvite precipitation is limited by the availability of orthophosphate. The aim of this work is to study the possibility of using(More)
Biofilm-based algal cultivation has received increased attention as a potential platform for algal production and other applications such as wastewater treatment. Algal biofilm cultivation systems represent an alternative to the suspension-based systems that have yet to become economically viable. One major advantage of algal biofilm systems is that algae(More)