Learn More
Maximum distance separable (MDS) array codes are widely used in storage systems to protect data against erasures. We address the rebuilding ratio problem, namely, in the case of erasures, what is the fraction of the remaining information that needs to be accessed in order to rebuild exactly the lost information? It is clear that when the number of erasures(More)
With the emergence of many-core architectures, it is quite likely that multiple applications will run concurrently on a system. Existing locally and globally adaptive routing algorithms largely overlook issues associated with workload consolidation. The shortsightedness of locally adaptive routing algorithms limits performance due to poor network congestion(More)
In distributed storage systems that use coding, the issue of minimizing the communication required to rebuild a storage node after a failure arises. We consider the problem of repairing an erased node in a distributed storage system that uses an EVENODD code. EVENODD codes are maximum distance separable (MDS) array codes that are used to protect against(More)
With the SIMT execution model, GPUs can hidememory latency through massive multithreading for many applications that have regular memory access patterns. To support applications with irregular memory access patterns, cache hierarchies have been introduced to GPU architectures to capture temporal and spatial locality and mitigate the effect of irregular(More)
An accurate and highly-efficient performance analysis approach is extremely important for the early-stage designs of network-on-chip. In this paper, the novel M/G/I/N queuing models for generic routers are proposed to analyze various packet blockings and then the performance analysis algorithm is presented to estimate some key metrics in terms of packet(More)
MDS array codes are widely used in storage systems to protect data against erasures. We address the rebuilding ratio problem, namely, in the case of erasures, what is the the fraction of the remaining information that needs to be accessed in order to rebuild exactly the lost information? It is clear that when the number of erasures equals the maximum number(More)
MDS codes are erasure-correcting codes that can correct the maximum number of erasures given the number of redundancy or parity symbols. If an MDS code has r parities and no more than r erasures occur, then by transmitting all the remaining data in the code one can recover the original information. However, it was shown that in order to recover a single(More)
MDS (maximum distance separable) array codes are widely used in storage systems due to their computationally efficient encoding and decoding procedures. An MDS code with r redundancy nodes can correct any r erasures by accessing (reading) all the remaining information in both the systematic nodes and the parity (redundancy) nodes. However, in practice, a(More)
Network virtualization has been proposed as a powerful vehicle for running multiple customized networks on a shared infrastructure. Virtual network embedding is a critical step for network virtualization that deals with efficient mapping of virtual nodes and virtual links onto the substrate network resources. Previous work in virtual network embedding(More)
Routing algorithms for networks-on-chip (NoCs) typically only have a small number of virtual channels (VCs) at their disposal. Limited VCs pose several challenges to the design of fully adaptive routing algorithms. First, fully adaptive routing algorithms based on previous deadlockavoidance theories require a conservative VC re-allocation scheme: a VC can(More)