Zhiyi You

Learn More
OBJECTIVE To explore the expression and distribution of ciliary neurotrophic factor(CNTF) mRNA and its protein in laryngeal nerve regeneration. METHODS The recurrent laryngeal nerves were sectioned and then sutured in twelve dogs. Both proximal and distal stumps of sutured region were sectioned on different postoperative days and the sections were(More)
Back-to-back hadron pair yields in d+Au and p+p collisions at √s(NN)=200 GeV were measured with the PHENIX detector at the Relativistic Heavy Ion Collider. Rapidity separated hadron pairs were detected with the trigger hadron at pseudorapidity |η|<0.35 and the associated hadron at forward rapidity (deuteron direction, 3.0<η<3.8). Pairs were also detected(More)
Multiple dynamic pathways always exist in biological networks, but their robustness against internal fluctuations and relative stability have not been well recognized and carefully analyzed yet. Here we try to address these issues through an illustrative example, namely the Siah-1/beta-catenin/p14/19 ARF loop of protein p53 dynamics. Its deterministic(More)
The PHENIX experiment has measured open heavy-flavor production via semileptonic decay over the transverse momentum range 1 < p(T) < 6  GeV/c at forward and backward rapidity (1.4 < |y| < 2.0) in d+Au and p + p collisions at √sNN = 200  GeV. In central d+Au collisions, relative to the yield in p + p collisions scaled by the number of binary nucleon-nucleon(More)
The PHENIX collaboration at the Relativistic Heavy Ion Collider (RHIC) reports measurements of azimuthal dihadron correlations near midrapidity in d+Au collisions at √(s(NN))=200 GeV. These measurements complement recent analyses by experiments at the Large Hadron Collider (LHC) involving central p+Pb collisions at √(s(NN))=5.02 TeV, which have indicated(More)
Neutral-pion π(0) spectra were measured at midrapidity (|y|<0.35) in Au+Au collisions at √(s(NN))=39 and 62.4 GeV and compared with earlier measurements at 200 GeV in a transverse-momentum range of 1<p(T)<10 GeV/c. The high-p(T) tail is well described by a power law in all cases, and the powers decrease significantly with decreasing center-of-mass energy.(More)
  • 1