Learn More
There is growing evidence that astrocytes play critical roles in neuron-glial interactions at the synapse. Astrocytes are believed to regulate presynaptic and postsynaptic structures and functions, in part, by the release of gliotransmitters such as glutamate, ATP, and d-serine; however, little is known of how neurons and astrocytes communicate to regulate(More)
To understand the genetic mechanism controlling the expression of the NMDA subtype of glutamate receptors during neuronal differentiation, we studied activation of the N-methyl-D-aspartate receptor subunit 1 (NR1) gene and the role of the repressor element-1 (RE1) element in NR1 promoter activation. Following neuronal differentiation of P19 embryonic(More)
N-Methyl-d-aspartate (NMDA) receptor subunit 2A (NR2A) is an important modulatory component of the NMDA subtype of glutamate receptors. To investigate the transcription mechanism of the NR2A gene, we cloned the 5'-flanking sequence from a rat genomic library. RNA mapping with rat brain RNA revealed two sets of major and several minor transcription start(More)
Astrocytes have been recently identified as important components of the tripartite synaptic complex. There is growing evidence that astrocytes regulate synaptic functions, in part, through the release of gliotransmitters. In a recent study, we have demonstrated that ephrinB3 could stimulate astrocytic release of D-serine through activation of EphB3 and(More)
  • 1