Learn More
BACKGROUND In the presence of drought and other desiccating stresses, plants synthesize and redistribute the phytohormone abscisic acid (ABA). ABA promotes plant water conservation by acting on specialized cells in the leaf epidermis, guard cells, which border and regulate the apertures of stomatal pores through which transpirational water loss occurs.(More)
The year 2003 has provided a continuing accretion of knowledge concerning the diverse ways in which guard cells sense and respond to abscisic acid. A deeper understanding of the biochemical mechanisms governing the response of guard cells to blue light has been gained, and new insights have been garnered regarding roles of the extracellular matrix in(More)
We isolated a total of 3 x 10(8) guard cell protoplasts from 22,000 Arabidopsis thaliana plants and identified 1734 unique proteins using three complementary proteomic methods: protein spot identification from broad and narrow pH range two-dimensional (2D) gels, and 2D liquid chromatography-matrix assisted laser desorption/ionization multidimensional(More)
Stomatal movements require massive changes in guard cell osmotic content, and both stomatal opening and stomatal closure have been shown to be energy-requiring processes. A possible role for glycolysis in contributing to the energetic, reducing requirements, or signalling processes regulating stomatal movements has not been investigated previously.(More)
Heterotrimeric G-proteins mediate crucial and diverse signaling pathways in eukaryotes. Here, we generate and analyze microarray data from guard cells and leaves of G-protein subunit mutants of the model plant Arabidopsis thaliana, with or without treatment with the stress hormone, abscisic acid. Although G-protein control of the transcriptome has received(More)
Signaling cascades mediated by heterotrimeric G proteins are ubiquitous and important signal transduction mechanisms in both metazoans and plants. In the model plant Arabidopsis thaliana, the sole canonical G protein alpha subunit, GPA1, has been implicated in multiple signaling events, including guard cell movement regulated by the plant stress hormone(More)
Messenger RNA 3'-end formation is an essential posttranscriptional processing step for most eukaryotic genes. Different from plants and animals where AAUAAA and its variants routinely are found as the main poly(A) signal, Chlamydomonas reinhardtii uses UGUAA as the major poly(A) signal. The advance of sequencing technology provides an enormous amount of(More)
Tandem repeats (TRs) extensively exist in the genomes of prokaryotes and eukaryotes. Based on the sequenced genomes and gene annotations of 31 plant and algal species in Phytozome version 8.0 (http://www.phytozome.net/), we examined TRs in a genome-wide scale, characterized their distributions and motif features, and explored their putative biological(More)
Two axially ligated rhodamine-Si(IV)-phthalocyanine (Rh-SiPc) conjugates, bearing one and two rhodamine B, were synthesized and their linear and two-photon photophysical, subcellular localization and photocytotoxic properties were studied. These Rh-SiPc conjugates exhibited an almost exclusive mitochondrial localizing property in human nasopharyngeal(More)
Understanding tissue-related gene expression patterns can provide important insights into gene, tissue, and organ function. Transcriptome analyses often have focused on housekeeping or tissue-specific genes or on gene coexpression. However, by analyzing thousands of single-gene expression distributions in multiple tissues of Arabidopsis thaliana, rice(More)