Zhiwei Gong

Qian Wang3
Zongbao K Zhao3
3Qian Wang
3Zongbao K Zhao
Learn More
BACKGROUND Microbial lipid production by using lignocellulosic biomass as the feedstock holds a great promise for biodiesel production and biorefinery. This usually involves hydrolysis of biomass into sugar-rich hydrolysates, which are then used by oleaginous microorganisms as the carbon and energy sources to produce lipids. However, the costs of microbial(More)
BACKGROUND Oligocelluloses and oligoxyloses are partially hydrolyzed products from lignocellulosic biomass hydrolysis. Biomass hydrolysates usually contain monosaccharides as well as various amounts of oligosaccharides. To utilize biomass hydrolysates more efficiently, it is important to identify microorganisms capable of converting biomass-derived(More)
BACKGROUND Microbial lipids produced from lignocellulosic biomass hold great promise for the biodiesel industry. These lipids usually consist of three major processes: pretreatment, enzymatic hydrolysis and lipid production. However, the conventional strategy of using biomass hydrolysates as the feedstock for lipid production suffers from low lipid(More)
BACKGROUND Acetic acid is routinely generated during lignocelluloses degradation, syngas fermentation, dark hydrogen fermentation and other anaerobic bioprocesses. Acetate stream is commonly regarded as a by-product and detrimental to microbial cell growth. Conversion of acetate into lipids by oleaginous yeasts may be a good choice to turn the by-product(More)
Betaine homocysteine methyltransferase (BHMT) catalyzes the synthesis of methionine using betaine and homocysteine (Hcy), which is restricted to the liver and kidney. Impaired BHMT pathway has been associated with hepatocellular carcinogenesis in Bhmt−/− mice model, and decreased BHMT was observed in a small sample of human hepatocellular carcinoma (HCC)(More)
  • 1