Learn More
We propose a nanoplasmonic waveguide side-coupled with bright-dark-dark resonators in our paper. A multi-oscillator theory derived from the typical two-oscillator model, is established to describe spectral features as well as slow-light effects in bright-dark-dark structures, and confirmed by the finite-difference time domain (FDTD). That a typical plasmon(More)
We first report a simple nanoplasmonic sensor for both universal and slow-light sensing in a Fano resonance-based waveguide system. A theoretical model based on the coupling of resonant modes is provided for the inside physics mechanism, which is supported by the numerical FDTD results. The revealed evolution of the sensing property shows that the Fano(More)
We investigate a classic optical effect based on plasmon induced transparency (PIT) in a metal-insulator-metal (MIM) bus waveguide coupled with a single defective cavity. With the coupled mode theory (CMT), a theoretical model, for the single defective cavity, is established to study spectral features in the plasmonic waveguide. We can achieve a required(More)
  • 1