Learn More
Cellular fate of nanoparticles is vital to application of nanoparticles to cell imaging, bio-sensing, drug delivery, suppression of drug resistance, gene delivery, and cytotoxicity analysis. However, the current studies on cellular fate of nanoparticles have been controversial due to complications of interplay between many possible factors. By(More)
A systematic study on the interaction of silica nanoparticles (NPs) with human cells has been carried out in the present work. Endocytosis and exocytosis are identified as major pathways for NPs entering, and exiting the cells, respectively. Most of the NPs are found to be enclosed in membrane bounded organelles, which are fairly stable (against rupture) as(More)
We disclosed a specific biological pathway for the observed cell damage when stimulated by the crystalline SiO(2) nanoparticles (NPs), i.e., both mitochondrion multiplication and DNA fragmentation occur upon the initial reactive oxygen species (ROS) generation, with the former causing further increases of the ROS level in the cell, and eventually leads to(More)
Drug release simultaneously with carrier decomposition has been demonstrated in SiO2-drug composite nanoparticles. By creating a radial drug concentration gradient in the nanoparticle, controllable release of the drug is primarily driven by diffusion. Escape of the drug molecules then triggers the SiO2 carrier decomposition, which starts from the center of(More)
The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds' escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to(More)
The photosensitizer (PS) methylene blue (MB) is confined in the close vicinity of an Au nanorod, by incorporating it into SiO2 during Au-core/SiO2-shell nanoparticle (NP) growth. Upon light irradiation of the Au@(SiO2-MB) NPs, generation of reactive oxygen species and their transport to the cytoplasm are directly responsible for significantly decreased cell(More)
Development of multifunctional nanoscale sensors working under physiological conditions enables monitoring of intracellular processes that are important for various biological and medical applications. By attaching paramagnetic gadolinium complexes to nanodiamonds (NDs) with nitrogen-vacancy (NV) centres through surface engineering, we developed a hybrid(More)
Nanoparticle-cell interactions begin with the cellular uptake of the nanoparticles, a process that eventually determines their cellular fate. In the present work, we show that the morphological features of nanodiamonds (NDs) affect both the anchoring and internalization stages of their endocytosis. While a prickly ND (with sharp edges/corners) has no(More)
  • 1